The R package scanstatistics enables the detection of anomalous space-time clusters using the scan statistics methodology. Scan statistics are commonly applied in disease surveillance, where they are used to detect disease outbreaks as they emerge locally. In this setting, cases of a given disease are recorded continuously across a country, and are then aggregated spatially to (say) district level, and temporally to (say) weekly counts. Scan statistics accomplish the detection task by searching the recent records of clusters of neighboring districts for patterns that seem anomalous given either past counts or the counts outside the cluster currently searched.
A scan statistic is proposed for the prospective monitoring of spatiotemporal count data with an excess of zeros. The method that is based on an outbreak model for the zero‐inflated Poisson distribution is shown to be superior to traditional scan statistics based on the Poisson distribution in the presence of structural zeros. The spatial accuracy and the detection timeliness of the proposed scan statistic are investigated by means of simulation, and an application on the weekly cases of Campylobacteriosis in Germany illustrates how the scan statistic could be used to detect emerging disease outbreaks. An implementation of the method is provided in the open‐source R package scanstatistics available on the Comprehensive R Archive Network.
No abstract
Irregularly sampled AR(1) processes appear in many computationally demanding applications. This text provides an analytical expression for the precision matrix of such a process, and gives efficient algorithms for density evaluation and simulation, implemented in the R package irregulAR1.
This chapter surveys univariate and multivariate methods for infectious disease outbreak detection. The setting considered is a prospective one: data arrives sequentially as part of the surveillance systems maintained by public health authorities, and the task is to determine whether to 'sound the alarm' or not, given the recent history of data. The chapter begins by describing two popular detection methods for univariate time series data: the EARS algorithm of the CDC, and the Farrington algorithm more popular at European public health institutions. This is followed by a discussion of methods that extend some of the univariate methods to a multivariate setting. This may enable the detection of outbreaks whose signal is only weakly present in any single data stream considered on its own. The chapter ends with a longer discussion of methods for outbreak detection in spatiotemporal data. These methods are not only tasked with determining if and when an outbreak started to emerge, but also where. In particular, the scan statistics methodology for outbreak cluster detection in discrete-time area-referenced data is discussed, as well as similar methods for continuous-time, continuous-space data. As a running example to illustrate the methods covered in the chapter, a dataset on invasive meningococcal disease in Germany in the years 2002-2008 is used. This data and the methods covered are available through the R packages surveillance and scanstatistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.