This paper derives analytical solutions for the critical Kelvin-Helmholtz (KH) instability conditions at the interface between a cylindrical gas column and a pool of viscous immiscible fluid confined in a chamber of finite size. The analysis focuses on conditions of negligible heat and mass transfer. The derivations are based on the established approaches reported in the literature with different boundary conditions. The most unstable instability conditions have also been calculated numerically. Experiments designed to measure the actual air column break-up conditions in water have been carried out to validate the analytical models. Comparisons show that the most unstable conditions predicted by the Viscous Corrections of the Viscous Potential Flow KH model are the best match to the experimentally measured break-up conditions. Parametric investigation of the instability theories shows that the vapour column size has a noticeable effect on the critical conditions, but has a negligible effect 2 on the most unstable conditions when the column radius is greater than 1.2 mm. Furthermore, the critical instability conditions are sensitive to the chamber size and the perturbation symmetry, while the most unstable conditions are insensitive to these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.