Designing distributed algorithms that converge quickly to an equilibrium is one of the foremost research goals in algorithmic game theory, and convex programs have played a crucial role in the design of algorithms for Fisher markets. In this paper we shed new light on both aspects for Fisher markets with linear and spending constraint utilities. We show fast convergence of the Proportional Response dynamics recently introduced by Wu and Zhang [WZ07]. The convergence is obtained from a new perspective: we show that the Proportional Response dynamics is equivalent to a gradient descent algorithm (with respect to a Bregman divergence instead of euclidean distance) on a convex program that captures the equilibria for linear utilities. We further show that the convex program program easily extends to the case of spending constraint utilities, thus resolving an open question raised by [Vaz10b]. This also gives a way to extend the Proportional Response dynamics to spending constraint utilties. We also prove a technical result that is interesting in its own right: that the gradient descent algorithm based on a Bregman divergence converges with rate O(1/t) under a condition that is weaker than having Lipschitz continuous gradient (which is the usual assumption in the optimization literature for obtaining the same rate).
We examine the classic on-line bipartite matching problem studied by Karp, Vazirani, and Vazirani [8] and provide a simple proof of their result that the Ranking algorithm for this problem achieves a competitive ratio of 1 -- 1/
e
.
Bargaining games on exchange networks have been studied by both economists and sociologists. A Balanced Outcome [10,16] for such a game is an equilibrium concept that combines notions of stability and fairness. In a recent paper, Kleinberg and Tardos [14] introduced balanced outcomes to the computer science community and provided a polynomial-time algorithm to compute the set of such outcomes. Their work left open a pertinent question: are there natural, local dynamics that converge quickly to a balanced outcome? In this paper, we provide a partial answer to this question by showing that simple edge-balancing dynamics converge to a balanced outcome whenever one exists. * azar@tau.ac.il,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.