Rationale: Smoking-related microvascular loss causes end-organ damage in the kidneys, heart, and brain. Basic research suggests a similar process in the lungs, but no large studies have assessed pulmonary microvascular blood flow (PMBF) in early chronic lung disease.Objectives: To investigate whether PMBF is reduced in mild as well as more severe chronic obstructive pulmonary disease (COPD) and emphysema.Methods: PMBF was measured using gadolinium-enhanced magnetic resonance imaging (MRI) among smokers with COPD and control subjects age 50 to 79 years without clinical cardiovascular disease. COPD severity was defined by standard criteria. Emphysema on computed tomography (CT) was defined by the percentage of lung regions below 2950 Hounsfield units (2950 HU) and by radiologists using a standard protocol. We adjusted for potential confounders, including smoking, oxygenation, and left ventricular cardiac output.Measurements and Main Results: Among 144 participants, PMBF was reduced by 30% in mild COPD, by 29% in moderate COPD, and by 52% in severe COPD (all P , 0.01 vs. control subjects). PMBF was reduced with greater percentage emphysema 2950HU and radiologist-defined emphysema, particularly panlobular and centrilobular emphysema (all P < 0.01). Registration of MRI and CT images revealed that PMBF was reduced in mild COPD in both nonemphysematous and emphysematous lung regions. Associations for PMBF were independent of measures of small airways disease on CT and gas trapping largely because emphysema and small airways disease occurred in different smokers.Conclusions: PMBF was reduced in mild COPD, including in regions of lung without frank emphysema, and may represent a distinct pathological process from small airways disease. PMBF may provide an imaging biomarker for therapeutic strategies targeting the pulmonary microvasculature.
Optical coherence tomography (OCT) is a noninvasive, depth-resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present a semi-automated segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for the OCT images, which suffer from low contrast and are highly corrupted by noise. A multiphase framework with a circular shape prior is adopted in order to model the boundaries of retinal layers and estimate the shape parameters using least squares. We use a contextual scheme to balance the weight of different terms in the energy functional. The results from various synthetic experiments and segmentation results on OCT images of rats are presented, demonstrating the strength of our method to detect the desired retinal layers with sufficient accuracy even in the presence of intensity inhomogeneity resulting from blood vessels. Our algorithm achieved an average Dice similarity coefficient of 0.84 over all segmented retinal layers, and of 0.94 for the combined nerve fiber layer, ganglion cell layer, and inner plexiform layer which are the critical layers for glaucomatous degeneration.
Abstract. Optical coherence tomography (OCT) is a non-invasive, depth resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present an automatic segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for OCT images, which suffer from low contrast and are highly corrupted by noise. We adopt a multi-phase framework with a circular shape prior in order to model the boundaries of retinal layers and estimate the shape parameters using least squares. We use a contextual scheme to balance the weight of different terms in the energy functional. The results from various synthetic experiments and segmentation results on 20 OCT images from four rats are presented, demonstrating the strength of our method to detect the desired retinal layers with sufficient accuracy and average Dice similarity coefficient of 0.85, specifically 0.94 for the the ganglion cell layer, which is the relevant layer for glaucoma diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.