We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group.Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error.Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm.
Assessed long-term effects of assisted reproduction technologies of in-vitro fertilization (IVF) and related techniques of embryo transfer (ET) on children's adjustment. 51 school-age Israeli children conceived by IVF/ET were compared with 51 control-matched children conceived spontaneously. The assessment included a comprehensive medical evaluation, a psychological examination, teachers' reports, parents' reports, and children's self-reports. As compared with controls, IVF/ET children did not reveal significant differences in physical and neurological status or on cognitive measures of IQ, visual-motor coordination, visual memory, and verbal comprehension. Nevertheless, the IVF/ET children were scored lower by teachers on measures of socioemotional adjustment in school and on self-report measures of anxiety, aggression, and depression. Among IVF/ET children, the tendency to be at a greater risk for emotional disturbances was exacerbated among boys and among children whose parents were older.
The study of influence maximization in social networks has largely ignored disparate effects these algorithms might have on the individuals contained in the social network. Individuals may place a high value on receiving information, e.g. job openings or advertisements for loans. While well-connected individuals at the center of the network are likely to receive the information that is being distributed through the network, poorly connected individuals are systematically less likely to receive the information, producing a gap in access to the information between individuals. In this work, we study how best to spread information in a social network while minimizing this access gap.We propose to use the maximin social welfare function as an objective function, where we maximize the minimum probability of receiving the information under an intervention. We prove that in this setting this welfare function constrains the access gap whereas maximizing the expected number of nodes reached does not. We also investigate the difficulties of using the maximin, and present hardness results and analysis for standard greedy strategies. Finally, we investigate practical ways of optimizing for the maximin, and give empirical evidence that a simple greedy-based strategy works well in practice.
No abstract
Abstract. In this paper we study the MapReduce Class (MRC) defined by Karloff et al., which is a formal complexity-theoretic model of MapReduce. We show that constant-round MRC computations can decide regular languages and simulate sublogarithmic space-bounded Turing machines. In addition, we prove hierarchy theorems for MRC under certain complexity-theoretic assumptions. These theorems show that sufficiently increasing the number of rounds or the amount of time per processor strictly increases the computational power of MRC. Our work lays the foundation for further analysis relating MapReduce to established complexity classes. Our results also hold for Valiant's BSP model of parallel computation and the MPC model of Beame et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.