Using a new implementation of ring-diagram helioseismology, we ascertain the strength and spatial scale of convective flows throughout the near-surface shear layer. Our ring-diagram technique employs highly overlapped analysis regions and an efficient method of 3D inversion to measure convective motions with a resolution that ranges from 3 Mm at the surface to 80 Mm at the base of the layer. We find the rms horizontal flow speed to peak at 427 m s −1 at the photosphere and fall to a minimum of 124 m s −1 between 20 Mm and 30 Mm. From the velocity amplitude and the dominant horizontal scales seen at each depth, we infer the level of rotational influence on convection to be low near the surface, but transition to a significant level at the base of the near-surface shear layer with a Rossby number varying between 2.2 to as low as 0.1. * Electronic address:
We present measurements of the Sun's sub-surface convective flows and provide evidence that the pattern of supergranulation is driven at the surface. The pattern subsequently descends slowly throughout the near-surface shear layer in a manner that is inconsistent with a 3D cellular structure. The flow measurements are obtained through the application of a new helioseismic technique based on traditional ring analysis. We measure the flow field over the course of eleven days and perform a correlation analysis between all possible pairs of depths and temporal separations. In congruence with previous studies, we find that the supergranulation pattern remains coherent at the surface for slightly less than two days and the instantaneous surface pattern is imprinted to a depth of 7 Mm. However, these correlation times and depths are deceptive. When we admit a potential time lag in the correlation, we find that peak correlation in the convective flows descends at a rate of 10-40 m s −1 (or equivalently 1-3 Mm per day). Furthermore, the correlation extends throughout all depths of the near-surface shear layer. This pattern-propagation rate is well matched by estimates of the speed of downflows obtained through the anelastic approximation. Direct integration of the measured speed indicates that the supergranulation pattern that first appears at the surface eventually reaches the bottom of the near-surface shear layer a month later. Thus, the downflows have a Rossby radius of deformation equal to the depth of the shear layer and we suggest that this equality may not be coincidental.
Inferences of sub-surface flow velocities using local domain ring-diagram helioseismology depend on measuring the frequency splittings of oscillation modes seen in acoustic power spectra. Current methods for making these measurements utilize maximum-likelihood fitting techniques to match a model of modal power to the spectra. The model typically describes a single oscillation mode, and each mode in a given power spectrum is fit independently. We present a new method that produces measurements with greater reliability and accuracy by fitting multiple modes simultaneously. We demonstrate how this method permits measurements of sub-surface flows deeper into the Sun while providing higher uniformity in data coverage and velocity response closer to the limb of the solar disk. While the previous fitting method performs better for some measurements of low-phase-speed modes, we find this new method to be particularly useful for high phase-speed modes and small spatial areas.
It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions.In this paper we investigate the observed power supression in plage and magnetic elements, by modelling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near solar disk center, where the line-ofsight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers.In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Further, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.