Since the first reports of oscillations in prominences in 1930s there have been major theoretical and observational advances to understand the nature of these oscillatory phenomena leading to a whole new field of so called "prominence seismology". There are two types of oscillatory phenomena observed in prominences; "small amplitude oscillations" ( 2-3 km s −1 ) which are quite common and "large amplitude oscillations" (>20 km s −1 ) for which observations are scarce. Large amplitude oscillations have been found as "winking filament" in Hα as well as motion in the sky plane in Hα, EUV, micro-wave and He 10830 observations. Historically, it was suggested that the large amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large amplitude oscillations in prominences. Large amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a couple of hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and therefore, justifies prominences seismology as a powerful diagnostic tool. On rare occasions, when the large amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.
Abstract.We study the effect of magnetism on the surface amplitude of p-modes by creating power maps using Doppler velocity, line-depth and continuum intensity data taken by the Michelson Doppler Interferometer (MDI) instrument on board SOHO. This analysis, using proper tracking procedures, of MDI line-depth data and its comparison with the simultaneous Doppler velocity data is the first such analysis. All three datasets show that the p-mode power is suppressed in the magnetic region with suppression increasing with field strength. However, in the high-frequency range, the power is enhanced in the Doppler velocity and line-depth data but not in continuum intensity. This enhancement, when present, appears to be in intermediate field strength elements in the immediate vicinity of a magnetically active region.
Kink oscillations of coronal loops, i.e., standing kink waves, is one of the most studied dynamic phenomena in the solar corona. The oscillations are excited by impulsive energy releases, such as low coronal eruptions. Typical periods of the oscillations are from a few to several minutes, and are found to increase linearly with the increase in the major radius of the oscillating loops. It clearly demonstrates that kink oscillations are natural modes of the loops, and can be described as standing fast magnetoacoustic waves with the wavelength determined by the length of the loop. Kink oscillations are observed in two different regimes. In the rapidly decaying regime, the apparent displacement amplitude reaches several minor radii of the loop. The damping time which is about several oscillation periods decreases with the increase in the oscillation amplitude, suggesting a nonlinear nature of the damping. In the decayless regime, the amplitudes are smaller than a minor radius, and the driver is still debated. The review summarises major findings obtained during the last decade, and covers both observational and theoretical results. Observational results include creation and analysis of comprehensive catalogues of the oscillation events, and detection of kink oscillations with imaging and spectral instruments in the EUV and microwave bands. Theoretical results include various approaches to modelling in terms of the magnetohydrodynamic wave theory. Properties of kink oscillations are found to depend on parameters of the oscillating loop, such as the magnetic twist, stratification, steady flows, temperature variations and so on, which make kink oscillations a natural probe of these parameters by the method of magnetohydrodynamic seismology.
Recent observations of coronal-loop waves by TRACE and within the corona as a whole byCoMP clearly indicate that the dominant oscillation period is 5 minutes, thus implicating the solar p modes as a possible source. We investigate the generation of tube waves within the solar convection zone by the buffeting of p modes. The tube waves-in the form of longitudinal sausage waves and transverse kink waves-are generated on the many magnetic fibrils that lace the convection zone and pierce the solar photosphere. Once generated by p-mode forcing, the tube waves freely propagate up and down the tubes, since the tubes act like light fibers and form a waveguide for these magnetosonic waves. Those waves that propagate upward pass through the photosphere and enter the upper atmosphere where they can be measured as loop oscillations and other forms of propagating coronal waves. We treat the magnetic fibrils as vertically aligned, thin flux tubes and compute the energy flux of tube waves that can generated and driven into the upper atmosphere. We find that a flux in excess of 10 5 ergs cm −2 s −1 can be produced, easily supplying enough wave energy to explain the observations. Furthermore, we compute the associated damping rate of the driving p modes and find that the damping is significant compared to observed line widths only for the lowest order p modes.
The National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) will revolutionize our ability to measure, understand, and model the basic physical processes that control the structure and dynamics of the Sun and its atmosphere. The first-light DKIST images, released publicly on 29 January 2020, only hint at the extraordinary capabilities that will accompany full commissioning of the five facility instruments. With this Critical Science Plan (CSP) we attempt to anticipate some of what those capabilities will enable, providing a snapshot of some of the scientific pursuits that the DKIST hopes to engage as start-of-operations nears. The work builds on the combined contributions of the DKIST Science Working Group (SWG) and CSP Community members, who generously shared their experiences, plans, knowledge, and dreams. Discussion is primarily focused on those issues to which DKIST will uniquely contribute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.