We report the electrochemistry of gold nanoparticles (AuNPs), prepared by Laser Ablation Synthesis in Solution (LASiS), via the electrocatalytic oxidation of glucose upon single nanoparticle collisions at inert microelectrodes. Spherical AuNPs with diameters in the range 20-30 nm, as determined by transmission electron microscopy, were synthesized by LASiS of a gold plate immersed in water. Nanoparticle collisions were electrochemically detected through the AuNP-catalysed oxidation of glucose at carbon fiber microelectrodes in alkaline solution, enabling the electrocatalytic detection of single AuNPs. This approach provides a basis for detecting and understanding the electrocatalytic properties of pristine nanoparticles in aqueous solutions.
The investigation of electrochemical processes at the interface of two immiscible electrolyte solutions (ITIES) is of great interest for sensing applications, and serves as a surrogate to the study of biological transport phenomena, e.g. ion channels. Alongside e-beam lithography, focused ion beam (FIB) milling is an attractive method to prototype and fabricate nanopore arrays that support nanoITIES. Within this contribution, we explore the capability of FIB/scanning electron microscopy (SEM) tomography to visualize the actual pore structure and interfaces at silica-modified nanoporous membranes. The nanopores were also characterized by atomic force microscopy (AFM) using ultra-sharp AFM probes to determine the pore diameter, and using scanning transmission electron microscopy (STEM) and energy dispersive X-ray (EDX) spectroscopy, providing additional information on the elemental composition of deposits within the pores. Si-rich particles could be identified within the pores as well as at the orifice that had faced the organic electrolyte solution during electrochemical deposition. The prospects of the used techniques for investigating the interface at or within FIB-milled nanopores will be discussed.
Electrochemical characterization of hen egg white lysozyme (HEWL) at a glycerolmodified interface between two immiscible electrolyte solutions (ITIES) was conducted using a microporous silicon membrane-supported gelled-1,6-dichlorohexane|water-glycerol interface. The electrochemical response of HEWL under these conditions is of interest for the system's potential application to the formation of isorefractive emulsified-ITIES, which offer practical opportunities for spectrophotometric analysis of interfacial processes. Importantly, the voltammetric signature for HEWL seen under glycerol-rich conditions was similar but with some differences from that for glycerol-free conditions. Specifically, the potential at which facilitated transfer of the organic phase electrolyte anion tetrakis-(4chlorophenyl) borate (TPBCl-) occurred was shifted to lower potential with increasing glycerol concentration. However, features in the voltammetry associated with adsorption/desorption processes were observed to remain constant. The simple ion transfer response of tetraethylammonium cations (TEA +) at the same glycerolmodified ITIES provides insight into the nature of changes that determine the atypical HEWL signature. Lower ion transfer current with respect to increasing glycerol concentration and a shift in transfer potential were the key findings here. The results indicate that the electrochemistry which determines the HEWL signature is similar in environments that are rich in glycerol or purely aqueous.
Crystallisation at or near interfaces plays an important role in many environmental, biological and industrial processes. In this study, crystallisation was investigated at the interface between two immiscible solutions undergoing...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.