To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).
Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a ‘natural’ unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, “R. indicum” and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.
Bedaquiline (BDQ), a diarylquinoline antibiotic that targets ATP synthase, is effective for the treatment of Mycobacterium tuberculosis infections that no longer respond to conventional drugs. While investigating the off-label use of BDQ as salvage therapy, seven of 13 patients with Mycobacterium intracellulare lung disease had an initial microbiological response and then relapsed. Whole-genome comparison of pretreatment and relapse isolates of M. intracellulare uncovered mutations in a previously uncharacterized locus, mmpT5. Preliminary analysis suggested similarities between mmpT5 and the mmpR5 locus, which is associated with low-level BDQ resistance in M. tuberculosis. Both genes encode transcriptional regulators and are adjacent to orthologs of the mmpS5-mmpL5 drug efflux operon. However, MmpT5 belongs to the TetR superfamily, whereas MmpR5 is a MarR family protein. Targeted sequencing uncovered nonsynonymous mmpT5 mutations in isolates from all seven relapse cases, including two pretreatment isolates. In contrast, only two relapse patient isolates had nonsynonymous changes in ATP synthase subunit c (atpE), the primary target of BDQ. Susceptibility testing indicated that mmpT5 mutations are associated with modest 2-to 8-fold increases in MICs for BDQ and clofazimine, whereas one atpE mutant exhibited a 50-fold increase in MIC for BDQ. Bedaquiline shows potential for the treatment of M. intracellulare lung disease, but optimization of treatment regimens is required to prevent the emergence of mmpT5 variants and microbiological relapse.
Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O 2 was used to understand how O 2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547[phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O 2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin system was identified that could be important for generation of new plasmidless rhizobial strains. Rlv3841 appears to use the methylglyoxal pathway alongside the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle for optimal growth on glucose. Surprisingly, the ED pathway was required for growth on succinate, suggesting that sugars made by gluconeogenesis must undergo recycling. Altered amino acid metabolism was specifically needed for growth on glucose, including RL2082 (gatB) and pRL120419 (opaA, encoding omegaamino acid:pyruvate transaminase). Growth on succinate specifically required enzymes of nucleobase synthesis, including ribose-phosphate pyrophosphokinase (RL3468 [prs]) and a cytosine deaminase (pRL90208 [codA]). Succinate growth was particularly dependent on cell surface factors, including the PrsD-PrsE type I secretion system and UDP-galactose production. Only RL2393 (glnB, encoding nitrogen regulatory protein PII) was specifically essential for growth on succinate at 1% O 2 , conditions similar to those experienced by N 2 -fixing bacteroids. Glutamate synthesis is constitutively activated in glnB mutants, suggesting that consumption of 2-ketoglutarate may increase flux through the TCA cycle, leading to excess reductant that cannot be reoxidized at 1% O 2 and cell death.IMPORTANCE Rhizobium leguminosarum, a soil bacterium that forms N 2 -fixing symbioses with several agriculturally important leguminous plants (including pea, vetch, and lentil), has been widely utilized as a model to study Rhizobium-legume symbioses. Insertion sequencing (INSeq) has been used to identify factors needed for its growth on different carbon sources and O 2 levels. Identification of these factors is fundamental to a better understanding of the cell physiology and core metabolism of this bacterium, which adapts to a variety of different carbon sources and O 2 tensions during growth in soil and N 2 fixation in symbiosis with legumes.KEYWORDS INSeq, nodules, Rhizobium leguminosarum, legumes, nitrogen fixation, Pisum sativum R hizobia are alphaproteobacteria able to form symbioses with legumes, on which they induce development of root nodules. Nodules provide an environment with both a low O 2 concentration and the correct nutrients to enable differentiation of rhizobia into nitrogen (N 2 )-fixing bacteroids (1). Bacteroids fix atmospheric N 2 into ammonium (NH 4 ϩ ), which is secreted to the plant host, and are, in turn, provided with
BackgroundThe Rhizobiaceae family of Gram-negative bacteria often engage in symbiosis with plants of economic importance. Historically, genetic studies to identify the function of individual genes, and characterize the biology of these bacteria have relied on the use of classical transposon mutagenesis. To increase the rate of scientific discovery in the Rhizobiaceae there is a need to adapt high-throughput genetic screens like insertion sequencing for use in this family of bacteria. Here we describe a Rhizobiaceae compatible MmeI-adapted mariner transposon that can be used with insertion sequencing for high-throughput genetic screening.ResultsThe newly constructed mariner transposon pSAM_Rl mutagenized R. leguminosarum, S. meliloti, and A. tumefaciens at a high frequency. In R. leguminosarum, mutant pools were generated that saturated 88% of potential mariner insertions sites in the genome. Analysis of the R. leguminosarum transposon insertion sequencing data with a previously described hidden Markov model-based method resulted in assignment of the contribution of all annotated genes in the R. leguminosarum 3841 genome for growth on a complex medium. Good concordance was observed between genes observed to be required for growth on the complex medium, and previous studies.ConclusionsThe newly described Rhizobiaceaee compatible mariner transposon insertion sequencing vector pSAM_Rl has been shown to mutagenize at a high frequency and to be an effective tool for use in high-throughput genetic screening. The construction and validation of this transposon insertion sequencing tool for use in the Rhizobiziaceae will provide an opportunity for researchers in the Rhizobiaceae community to use high-throughput genetic screening, allowing for significant increase in the rate of genetic discovery, particularly given the recent release of genome sequences from many Rhizobiaceae strains.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-014-0298-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.