Acquisition of quasi‐monoenergetic ("pristine") depth‐dose curves is an essential task in the frame of commissioning and quality assurance of a proton therapy treatment head. For pencil beam scanning delivery modes this is often accomplished by measuring the integral ionization in a plane perpendicular to the axis of an unscanned beam. We focus on the evaluation of three integral detectors: two of them are plane‐parallel ionization chambers with an effective radius of 4.1 cm and 6.0 cm, respectively, mounted in a scanning water phantom. The third integral detector is a 6.0 cm radius multilayer ionization chamber. The experimental results are compared with the corresponding measurements under broad field conditions, which are performed with a small radius plane‐parallel chamber and a small radius multilayer ionization chamber. We study how a measured depth‐dose curve of a pristine proton field depends on the detection device, by evaluating the shape of the depth‐dose curve, the relative charge collection efficiency, and intercomparing measured ranges. Our results show that increasing the radius of an integral chamber from 4.1 cm to 6.0 cm increases the collection efficiency by 0%–3.5% depending on beam energy and depth. Ranges can be determined by the large electrode multilayer ionization chamber with a typical uncertainty of 0.4 mm on a routine basis. The large electrode multilayer ionization chamber exhibits a small distortion in the Bragg Peak region. This prohibits its use for acquisition of base data, but is tolerable for quality assurance. The good range accuracy and the peak distortion are characteristics of the multilayer ionization chamber design, as shown by the direct comparison with the small electrode counterpart.PACS number: 87.55.Qr
We present here a novel method for using a single device in the daily quality assurance (QA) of pencil beam scanning (PBS) proton beams and an improved method for uniform scanning (US). The device can be used to measure the spot position, spot sigma, range, output, collinearity of the X‐ray system and proton beam, and to QA the first scatterers and a number of other imaging and mechanical checks. We have performed the daily QA according to this procedure for more than six months in both a PBS gantry and a US gantry. All of the tests were found to be sensitive and accurate enough to determine if the property being tested is within the tolerance. The output has remained within the ±.15em2% tolerance, with the majority of measurements within ±.15em1%, and the range was within ±.15em0.5.15emmm. The collinearity of the proton beam in both gantries is within the ±.15em1.15emmm tolerance in both X and Y directions for all measurements. A novel procedure to measure the functionality of the first scatterers in the US gantry is included in the QA procedure. It was found to be sensitive enough to pick up the thinnest scatterer of 0.6 mm in both possible failure methods — when it always remains in the beam or in the case when it never goes into the beam. The daily QA procedure presented here can be implemented at PBS or US proton therapy centers with a minimal outlay for equipment and setup time. The procedure can be performed in less than 30 min, and has been found to be accurate and reliable enough for the QA of a proton therapy gantry before patient treatment every day.PACS number: 87.55.Qr
Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.
Proton beam therapy is increasingly applied for the treatment of human cancer, as it promises to reduce normal tissue damage. However, little is known about the relationship between linear energy transfer (LET), the type of DNA damage, and cellular repair mechanisms, particularly for cells irradiated with protons. We irradiated cultured cells delivering equal doses of X-ray photons, Bragg-peak protons, or plateau protons and used this set-up to quantitate initial DNA damage (mainly DNA double strand breaks (DSBs)), and to analyze kinetics of repair by detecting γH2A.X or 53BP1 using immunofluorescence. The results obtained validate the reliability of our set-up in delivering equal radiation doses under all conditions employed. Although the initial numbers of γH2A.X and 53BP1 foci scored were similar under the different irradiation conditions, it was notable that the maximum foci level was reached at 60 min after irradiation with Bragg-peak protons, as compared to 30 min for plateau protons and photons. Interestingly, Bragg-peak protons induced larger and irregularly shaped γH2A.X and 53BP1 foci. Additionally, the resolution of these foci was delayed. These results suggest that Bragg-peak protons induce DNA damage of increased complexity which is difficult to process by the cellular repair apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.