Peroxynitrite formation has been demonstrated in several neurodegenerative disorders; thus far, protein nitration and consequent alterations in protein function are implicated as mechanistic events. Free 3-nitrotyrosine (free-3NT) is also elevated in these settings; a neurotoxic role for this modified amino acid has not been investigated. We tested the hypothesis that free-3NT is neurotoxic in vivo, using a mouse model of striatal degeneration. The neurodegenerative effects of the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) (unilateral intrastriatal injection, 64 nmol) were compared with free-3NT (32 nmol) or free-tyrosine (free-TYR) (32 nmol). 6-OHDA-treated mice exhibited significant ipsilateral turning behavior after d-amphetamine challenge, indicative of unilateral striatal injury (ipsilateral-contralateral turning differential, 21.1 +/- 6.8). Significant turning behavior was also observed in free-3NT-treated mice but not in free-tyrosine-treated mice (free-3NT, 16.0 +/- 3.9; free-TYR, 1 +/- 2.7; p < 0.01). Immunohistochemistry was used to evaluate striatal tyrosine hydroxylase (TH) content. 6-OHDA or free-3NT treatment caused severe reductions in TH immunoreactivity in injected striata compared with the contralateral hemisphere (injected/contralateral immunoreactivity ratio: 6-OHDA, 0.23 +/- 0.07; free-3NT, 0.49 +/- 0.02). Free-tyrosine treatment had no effect (1.03 +/- 0.09). Turning behavior was correlated with striatal TH ratio (p < 0.01). Furthermore, we observed a striking unilateral reduction in TH-positive cell body counts in the substantia nigra pars compacta of 6-OHDA- and free-3NT-treated mice (injected/contralateral cell count ratio: 6-OHDA, 0.40 +/- 0.04; free-3NT, 0.59 +/- 0.02). Free-tyrosine treatment had no effect (1.05 +/- 0.04). No evidence for increased striatal protein incorporation of 3NT was observed in any treatment group. These data represent the first evidence that free-3NT can elicit neurodegenerative effects in vivo; free-3NT may have a causal role in neurodegenerative conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.