The industrial Haber-Bosch process to produce ammonia (NH3) from dinitrogen (N2) is crucial for modern society. However, N2 activation is inherently challenging and the Haber-Bosch process has significant drawbacks, as it is highly energy intensive, not sustainable due to substantial CO2 emissions primarily from the generation of H2 and requires large-centralized facilities. New strategies of sustainable N2 activation, such as low-temperature thermochemical catalysis and (photo)electrocatalysis, have been pursued, but progress has been hindered by the lack of rigor and reproducibility in the collection and analysis of results.In this Primer, we provide a holistic step-by-step protocol, applicable to all nitrogen-transformation reactions, focused on verifying genuine N2 activation by accounting for all contamination sources. We compare state-of-the-art results from different catalytic reactions following the protocol's framework, and discuss necessary reporting metrics and ways to interpret both experimental and density functional theory results. This Primer covers various common pitfalls in the field, best practices to improve reproducibility and cost-efficient methods to carry out rigorous experimentation. The future of nitrogen catalysis will require an increase in rigorous experimentation and standardization to prevent false positives from appearing in the literature, which can enable advancing towards practical technologies for the activation of N2.
Photocatalytic nitrogen fixation provides a promising route to produce reactive nitrogen compounds at benign conditions. Titania has been reported as an active photocatalyst for reduction of dinitrogen to ammonia; however there is little fundamental understanding of how this process occurs. In this work the rutile (110) model surface is hypothesized to be the active site, and a computational model based on the Bayesian error estimation functional (BEEF-vdW) and computational hydrogen electrode is applied in order to analyze the expected dinitrogen coverage at the surface as well as the overpotentials for electrochemical reduction and oxidation. This is the first application of computational techniques to photocatalytic nitrogen fixation, and the results indicate that the thermodynamic limiting potential for nitrogen reduction on rutile (110) is considerably higher than the conduction band edge of rutile TiO 2 , even at oxygen vacancies and iron substitutions. This work provides strong evidence against the most commonly reported experimental hypotheses, and indicates that rutile (110) is unlikely to be the relevant surface for nitrogen reduction. However, the limiting potential for nitrogen oxidation on rutile (110) is significantly lower, indicating 1 arXiv:1707.03031v3 [physics.chem-ph] 31 Jan 2018 that oxidative pathways may be relevant on rutile (110). These findings suggest that photocatalytic dinitrogen fixation may occur via a complex balance of oxidative and reductive processes.
Photo-catalytic fixation of nitrogen by titania catalysts at ambient conditions has been reported for decades, yet the active site capable of adsorbing an inert N 2 molecule at ambient pressure and the mechanism of dissociating the strong dinitrogen triple bond at room temperature remain unknown. In this work in situ nearambient-pressure X-ray photo-electron spectroscopy and density functional theory calculations are used to probe the active state of the rutile (110) surface. The experimental results indicate that photon-driven interaction of N 2 and TiO 2 is observed only if adventitious surface carbon is present, and computational results show a remarkably strong interaction between N 2 and carbon substitution (C*) sites that act as surface-bound carbon radicals. A carbon-assisted nitrogen reduction mechanism is proposed and shown to be thermodynamically feasible. The findings provide a molecular-scale explanation for the long-standing mystery of photo-catalytic nitrogen fixation on titania. The results suggest that controlling and characterizing carbon-based active sites may provide a route to engineering more efficient photo(electro)catalysts and improving experimental reproducibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.