The industrial Haber-Bosch process to produce ammonia (NH3) from dinitrogen (N2) is crucial for modern society. However, N2 activation is inherently challenging and the Haber-Bosch process has significant drawbacks, as it is highly energy intensive, not sustainable due to substantial CO2 emissions primarily from the generation of H2 and requires large-centralized facilities. New strategies of sustainable N2 activation, such as low-temperature thermochemical catalysis and (photo)electrocatalysis, have been pursued, but progress has been hindered by the lack of rigor and reproducibility in the collection and analysis of results.In this Primer, we provide a holistic step-by-step protocol, applicable to all nitrogen-transformation reactions, focused on verifying genuine N2 activation by accounting for all contamination sources. We compare state-of-the-art results from different catalytic reactions following the protocol's framework, and discuss necessary reporting metrics and ways to interpret both experimental and density functional theory results. This Primer covers various common pitfalls in the field, best practices to improve reproducibility and cost-efficient methods to carry out rigorous experimentation. The future of nitrogen catalysis will require an increase in rigorous experimentation and standardization to prevent false positives from appearing in the literature, which can enable advancing towards practical technologies for the activation of N2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.