Behavioral researchers are increasingly using Webbased software such as JavaScript to conduct response time experiments. Although there has been some research on the accuracy and reliability of response time measurements collected using JavaScript, it remains unclear how well this method performs relative to standard laboratory software in psychologically relevant experimental manipulations. Here we present results from a visual search experiment in which we measured response time distributions with both Psychophysics Toolbox (PTB) and JavaScript. We developed a methodology that allowed us to simultaneously run the visual search experiment with both systems, interleaving trials between two independent computers, thus minimizing the effects of factors other than the experimental software. The response times measured by JavaScript were approximately 25 ms longer than those measured by PTB. However, we found no reliable difference in the variability of the distributions related to the software, and both software packages were equally sensitive to changes in the response times as a result of the experimental manipulations. We concluded that JavaScript is a suitable tool for measuring response times in behavioral research.
Psychology researchers have long attempted to identify educational practices that improve student learning. However, experimental research on these practices is often conducted in laboratory contexts or in a single course, which threatens the external validity of the results. In this article, we establish an experimental paradigm for evaluating the benefits of recommended practices across a variety of authentic educational contexts—a model we call ManyClasses. The core feature is that researchers examine the same research question and measure the same experimental effect across many classes spanning a range of topics, institutions, teacher implementations, and student populations. We report the first ManyClasses study, in which we examined how the timing of feedback on class assignments, either immediate or delayed by a few days, affected subsequent performance on class assessments. Across 38 classes, the overall estimate for the effect of feedback timing was 0.002 (95% highest density interval = [−0.05, 0.05]), which indicates that there was no effect of immediate feedback compared with delayed feedback on student learning that generalizes across classes. Furthermore, there were no credibly nonzero effects for 40 preregistered moderators related to class-level and student-level characteristics. Yet our results provide hints that in certain kinds of classes, which were undersampled in the current study, there may be modest advantages for delayed feedback. More broadly, these findings provide insights regarding the feasibility of conducting within-class randomized experiments across a range of naturally occurring learning environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.