Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.
Purpose To detect and quantify choroidal neovascularization (CNV) in age-related macular degeneration (AMD) patients using optical coherence tomography (OCT) angiography. Design Observational, cross-sectional study. Participants Five normal subjects and five neovascular AMD patients were included. Methods Five eyes with neovascular AMD and five normal age-matched controls were scanned by a high-speed (100,000 A-scans/sec) 1050 nm wavelength swept-source OCT. The macular angiography scan covered a 3×3 mm area and comprised 200×200×8 A-scans acquired in 3.5 sec. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by three dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2D angiograms from the 3 layers. CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. Main Outcome Measurements CNV angiogram, CNV area, and CNV flow index. Results En face OCT angiograms of CNVs showed sizes and locations that were confirmed by fluorescein angiography. OCT angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in one case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruch’s layer and classify type I and type II CNV. A feeder vessel could be identified in one case. Higher flow indexes were associated with larger CNV and type II CNV. Conclusions OCT angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.
We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000–400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100kHz axial scan rate with 5.3um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0um axial resolution at 100kHz axial scan rate. A 200kHz axial scan rate with 5.3um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400kHz axial scan rate, almost 2X faster than previous 1050nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12×12mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050nm wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050nm wavelengths will play an important role in future ophthalmic instrumentation.
We demonstrate ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) using an ultrahigh speed CMOS line scan camera at rates of 70,000 -312,500 axial scans per second. Several design configurations are characterized to illustrate trade-offs between acquisition speed, resolution, imaging range, sensitivity and sensitivity roll-off performance. Ultrahigh resolution OCT with 2.5 -3.0 micron axial image resolution is demonstrated at ∼ 100,000 axial scans per second. A high resolution spectrometer design improves sensitivity roll-off and imaging range performance, trading off imaging speed to 70,000 axial scans per second. Ultrahigh speed imaging at >300,000 axial scans per second with standard image resolution is also demonstrated. Ophthalmic OCT imaging of the normal human retina is investigated. The high acquisition speeds enable dense raster scanning to acquire densely sampled volumetric three dimensional OCT (3D-OCT) data sets of the macula and optic disc with minimal motion artifacts. Imaging with ∼ 8 -9 micron axial resolution at 250,000 axial scans per second, a 512 × 512 × 400 voxel volumetric 3D-OCT data set can be acquired in only ∼ 1.3 seconds. Orthogonal registration scans are used to register OCT raster scans and remove residual axial eye motion, resulting in 3D-OCT data sets which preserve retinal topography. Rapid repetitive imaging over small volumes can visualize small retinal features without motion induced distortions and enables volume registration to remove eye motion. Cone photoreceptors in some regions of the retina can be visualized without adaptive optics or active eye tracking. Rapid repetitive imaging of 3D volumes also provides dynamic volumetric information (4D-OCT) which is shown to enhance visualization of retinal capillaries and should enable functional imaging. Improvements in the speed and performance of 3D-OCT volumetric imaging promise to enable earlier diagnosis and improved monitoring of disease progression and response to therapy in ophthalmology, as well as have a wide range of research and clinical applications in other areas. 1.IntroductionAn increasingly important tool for medical diagnosis and biomedical research, Optical Coherence Tomography (OCT) enables two and three dimensional visualization of the internal structure and morphology of tissue [1]. High sensitivity, large dynamic range, and micron level resolution imaging are achieved with OCT by interferometric detection of backscattered light from the sample. In ophthalmology, OCT can perform non-invasive structural and quantitative NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript imaging of the retina and anterior segment, which enables the identification of pathologies for disease diagnosis or monitoring responses to therapy [2].The earliest implementations of OCT used low coherence interferometry with time domain detection in which the echo delay of backscattered light was measured by mechanically sweeping a mirror in a reference arm [3,4,5]. Commercial ophtha...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.