The ability of the environmental xenoestrogen bisphenol A (BPA) to increase uterine wet weight in the rodent remains controversial, and few studies have previously examined the effects of BPA on uterine morphology. Furthermore, it is not known whether BPA-induced uterotrophic effects are, similarly to beta-estradiol (E(2)), mediated through the estrogen receptor (ER). In this study, we compared the effects of BPA on uterine wet weight and morphology to those of E(2) in the B6C3F1 ovariectomized mouse. To examine whether these effects were mediated through the ER, the antiestrogen ICI 182, 780 (ICI) was co-administered with BPA or E(2). We report that subcutaneous administration of BPA at doses between 0.8 and 8 mg/day over 4 days significantly increased mean uterine wet weights above those of vehicle (corn oil)-treated mice. The uterine weight data suggest that BPA acts as a partial agonist with an EC(50) of 0.72 mg/day compared to 19.4 ng/day for E(2). BPA (2 mg/day) and E(2) (40 ng/day) induced a significant increase in luminal epithelial height and in the thickness of both the stromal and myometrial layers of the uterus. The effects of 40 ng E(2)/day on all endpoints studied were reversed by 20 microg ICI/day. ICI at 200, but not 20 microg/day, was able to reverse the BPA (2 mg/day)-induced increase in both uterine wet weight and luminal epithelial height. ICI alone at 200 microg/day stimulated an increase in thickness of both the stroma and myometrium and did not reverse the effects of BPA (2 mg/day) on these layers. These results suggest that the BPA-induced increase in uterine wet weight and in luminal epithelial height in the ovariectomized B6C3F1 mouse are mediated by the ER.
Cells respond to physiologic stress by enhancing the expression of specific stress proteins. Heat-shock proteins (hsps) and glucose-regulated proteins (grps) are members of a large superfamily of proteins collectively referred to as stress proteins. This particular stress-protein response has evolved as a cellular strategy to protect, repair, and chaperone other essential cellular proteins. The objective of this study was to evaluate the differential expression of four hsps in the renal cortex and medulla during experimental nephrotoxic injury using HgCl2. Male Sprague-Dawley rats received single injections of HgCl2 (0.25, 0.5, or 1 mg Hg/kg, i.v.). At 4, 8, 16, or 24 h after exposure, kidneys were removed and processed for histopathologic, immunoblot, and immunohistochemical analyses. Nephrosis was characterized as minimal or mild (cytoplasmic condensation, tubular epithelial degeneration, single cell necrosis) at the lower exposures, and progressed to moderate or severe (nuclear pyknosis, necrotic foci, sloughing of the epithelial casts into tubular lumens) at the highest exposures. Western blots of renal proteins were probed with monoclonal antibodies specific for 4 hsps. In whole kidney, Hg(II) induced a time- and dose-related accumulation of hsp72 and grp94. Accumulation of hsp72 was predominantly localized in the cortex and not medulla, while grp94 accumulated primarily in the medulla but not cortex. The high, constitutive expression of hsp73 did not change as a result of Hg(II) exposure, and it was equally localized in cortex and medulla. Hsp90 was not detected in kidneys of control or Hg-treated rats. Since hsp72 has been shown involved in cellular repair and recovery, and since Hg(II) damage occurs primarily in cortex, we investigated the cell-specific expression of this hsp. Hsp72 accumulated primarily in undamaged distal convoluted tubule epithelia, with less accumulation in undamaged proximal convoluted-tubule epithelia. These results demonstrate that expression of specific stress proteins in rat kidney exhibits regional heterogeneity in response to Hg(II) exposure, and a positive correlation exists between accumulation of some stress proteins and acute renal cell injury. While the role of accumulation of hsps and other stress proteins in vivo prior to or concurrent with nephrotoxicity remains to be completely understood, these stress proteins may be part of a cellular defense response to nephrotoxicants. Conversely, renal tubular epithelial cells that do not or are unable to express stress proteins, such as hsp72, may be more susceptible to nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.