Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 AIV subtypes during 2007 and 31 during 2008. Ten hemagglutinin (HA) subtypes were detected each year (i.e., H1, 3–8, and 10–12 during 2007; H1-8, 10 and 11 during 2008). All neuraminidase (NA) subtypes were detected during each year of the study. Subtype diversity varied between years and increased with prevalence into September. Predominant subtypes during 2007 (comprising ≥5% of subtype diversity) included H1N1, H3N6, H3N8, H4N6, H7N3, H10N7, and H11N9. Predominant subtypes during 2008 included H3N6, H3N8, H4N6, H4N8, H6N1, and H10N7. Additionally, within each HA subtype, the same predominant HA/NA subtype combinations were detected each year and included H1N1, H3N8, H4N6, H5N2, H6N1, H7N3, H8N4, H10N7, and H11N9. The H2N3 and H12N5 viruses also predominated within the H2 and H12 subtypes, respectively, but only were detected during a single year (H2 and H12 viruses were not detected during 2007 and 2008, respectively). Mallards were the predominant species sampled (63.7% of the total), and 531 AIV were isolated from this species (80.5% of the total isolates). Mallard data collected during both years adequately described the observed temporal and spatial prevalence from the total sample and also adequately represented subtype diversity. Juvenile mallards also were adequate in describing the temporal and spatial prevalence of AIV as well as subtype diversity.
Although aquatic habitats utilized by wild and domestic birds potentially can provide a bridge for avian influenza virus (AIV) transmission among many diverse hosts, the factors controlling environmental persistence and transmission via these habitats are poorly understood. AIV has been detected in water samples collected in the field, and under experimental laboratory conditions, these viruses can remain infective in water for periods of time that would be consistent with an environmental reservoir. However, the application of laboratory results to field realities is complicated by the complexity and scale of these systems. In this brief review, we present a summary of existing research on the environmental tenacity of AIV, provide an example of the challenges associated with the application of laboratory results to the field realities associated with detection of AIV from environmental sources, and identify gaps in our current understanding of the factors potentially affecting AIV infectivity in the environment, specifically from aquatic habitats utilized by wild birds.
Serologic testing to detect antibodies to avian influenza (AI) virus has been an underused tool for the study of these viruses in wild bird populations, which traditionally has relied on virus isolation and reverse transcriptase-polymerase chain reaction (RT-PCR). In a preliminary study, a recently developed commercial blocking enzyme-linked immunosorbent assay (bELISA) had sensitivity and specificity estimates of 82% and 100%, respectively, for detection of antibodies to AI virus in multiple wild bird species after experimental infection. To further evaluate the efficacy of this commercial bELISA and the agar gel immunodiffusion (AGID) test for AI virus antibody detection in wild birds, we tested 2,249 serum samples collected from 62 wild bird species, representing 10 taxonomic orders. Overall, the bELISA detected 25.4% positive samples, whereas the AGID test detected 14.8%. At the species level, the bELISA detected as many or more positive serum samples than the AGID in all 62 avian species. The majority of positive samples, detected by both assays, were from species that use aquatic habitats, with the highest prevalence from species in the orders Anseriformes and Charadriiformes. Conversely, antibodies to AI virus were rarely detected in the terrestrial species. The serologic data yielded by both assays are consistent with the known epidemiology of AI virus in wild birds and published reports of host range based on virus isolation and RT-PCR. The results of this research are also consistent with the aforementioned study, which evaluated the performance of the bELISA and AGID test on experimental samples. Collectively, the data from these two studies indicate that the bELISA is a more sensitive serologic assay than the AGID test for detecting prior exposure to AI virus in wild birds. Based on these results, the bELISA is a reliable species-independent assay with potentially valuable applications for wild bird AI surveillance.
West Nile virus (WNV) was first isolated in the state of Georgia in the summer of 2001. As amplifying hosts of WNV, avian species play an important role in the distribution and epidemiology of the virus. The objective of this study was to identify avian species that are locally involved as potential amplifying hosts of WNV and can serve as indicators of WNV transmission over the physiographic and land use variation present in the southeastern United States. Avian serum samples (n=14,077) from 83 species of birds captured throughout Georgia during the summers of 2000-2004 were tested by a plaque reduction neutralization test for antibodies to WNV and St. Louis encephalitis virus. Over the 5-year period, WNV-neutralizing antibodies were detected in 869 (6.2%) samples. The WNV seroprevalence increased significantly throughout the study and was species dependent. The highest antibody prevalence rates were detected in rock pigeons (Columba livia), northern cardinals (Cardinalis cardinalis), common ground doves (Columbina passerina), grey catbirds (Deumetella carolinensis), and northern mockingbirds (Mimus polyglottos). Northern cardinals, in addition to having high geometric mean antibody titers and seroprevalence rates, were commonly found in all land use types and physiographic regions. Rock pigeons, common ground doves, grey catbirds, and northern mockingbirds, although also having high seroprevalence rates and high antibody titers against WNV, were more restricted in their distribution and therefore may be of more utility when attempting to assess exposure rates in specific habitat types. Of all species tested, northern cardinals represent the best potential avian indicator species for widespread serologic-based studies of WNV throughout Georgia due to their extensive range, ease of capture, and high antibody rates and titers. Due to the large geographic area covered by this species, their utility as a WNV sentinel species may include most of the eastern United States.
Seasonal dynamics of influenza A viruses (IAVs) are driven by host density and population immunity. Through an analysis of subtypic data for IAVs isolated from Blue-winged Teal (Anas discors), we present evidence for seasonal patterns in the relative abundance of viral subtypes in spring and summer/autumn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.