Population modeling of tumor size dynamics has recently emerged as an important tool in pharmacometric research. A series of new mixed-effects models have been reported recently, and we present herein a synthetic view of models with published mathematical equations aimed at describing the dynamics of tumor size in cancer patients following anticancer drug treatment. This selection of models will constitute the basis for the Drug Disease Model Resources (DDMoRe) repository for models on oncology.
Purpose: To develop a tumor growth inhibition model for adult diffuse low-grade gliomas (LGG) able to describe tumor size evolution in patients treated with chemotherapy or radiotherapy.Experimental Design: Using longitudinal mean tumor diameter (MTD) data from 21 patients treated with first-line procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine (PCV) chemotherapy, we formulated a model consisting of a system of differential equations, incorporating tumorspecific and treatment-related parameters that reflect the response of proliferative and quiescent tumor tissue to treatment. The model was then applied to the analysis of longitudinal tumor size data in 24 patients treated with first-line temozolomide (TMZ) chemotherapy and in 25 patients treated with first-line radiotherapy.Results: The model successfully described the MTD dynamics of LGG before, during, and after PCV chemotherapy. Using the same model structure, we were also able to successfully describe the MTD dynamics in LGG patients treated with TMZ chemotherapy or radiotherapy. Tumor-specific parameters were found to be consistent across the three treatment modalities. The model is robust to sensitivity analysis, and preliminary results suggest that it can predict treatment response on the basis of pretreatment tumor size data.Conclusions: Using MTD data, we propose a tumor growth inhibition model able to describe LGG tumor size evolution in patients treated with chemotherapy or radiotherapy. In the future, this model might be used to predict treatment efficacy in LGG patients and could constitute a rational tool to conceive more effective chemotherapy schedules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.