The available mathematical models describing tumor growth and the effect of anticancer treatments on tumors in animals are of limited use within the drug industry. A simple and effective model would allow applying quantitative thinking to the preclinical development of oncology drugs. In this article, a minimal pharmacokinetic-pharmacodynamic model is presented, based on a system of ordinary differential equations that link the dosing regimen of a compound to the tumor growth in animal models. The growth of tumors in nontreated animals is described by an exponential growth followed by a linear growth. In treated animals, the tumor growth rate is decreased by a factor proportional to both drug concentration and number of proliferating tumor cells. A transit compartmental system is used to model the process of cell death, which occurs at later times. The parameters of the pharmacodynamic model are related to the growth characteristics of the tumor, to the drug potency, and to the kinetics of the tumor cell death. Therefore, such parameters can be used for ranking compounds based on their potency and for evaluating potential differences in the tumor cell death process. The model was extensively tested on discovery candidates and known anticancer drugs. It fitted well the experimental data, providing reliable parameter estimates. On the basis of the parameters estimated in a first experiment, the model successfully predicted the response of tumors exposed to drugs given at different dose levels and/or schedules. It is, thus, possible to use the model prospectively, optimizing the design of new experiments.
Population modeling of tumor size dynamics has recently emerged as an important tool in pharmacometric research. A series of new mixed-effects models have been reported recently, and we present herein a synthetic view of models with published mathematical equations aimed at describing the dynamics of tumor size in cancer patients following anticancer drug treatment. This selection of models will constitute the basis for the Drug Disease Model Resources (DDMoRe) repository for models on oncology.
BackgroundModularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable.ResultsThe modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites) relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters) connected to a fixed output device (a logic inverter) expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations.ConclusionsPromoters activities (referred to a standard promoter) can vary when they are measured via different reporter devices (up to 22%), when they are used within a two-expression-cassette system (up to 35%) and when they drive another device in a functionally interconnected circuit (up to 44%). This paper provides a significant contribution to the study of modularity limitations in building biological systems by providing useful data on context-dependent variability of biological components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.