The available mathematical models describing tumor growth and the effect of anticancer treatments on tumors in animals are of limited use within the drug industry. A simple and effective model would allow applying quantitative thinking to the preclinical development of oncology drugs. In this article, a minimal pharmacokinetic-pharmacodynamic model is presented, based on a system of ordinary differential equations that link the dosing regimen of a compound to the tumor growth in animal models. The growth of tumors in nontreated animals is described by an exponential growth followed by a linear growth. In treated animals, the tumor growth rate is decreased by a factor proportional to both drug concentration and number of proliferating tumor cells. A transit compartmental system is used to model the process of cell death, which occurs at later times. The parameters of the pharmacodynamic model are related to the growth characteristics of the tumor, to the drug potency, and to the kinetics of the tumor cell death. Therefore, such parameters can be used for ranking compounds based on their potency and for evaluating potential differences in the tumor cell death process. The model was extensively tested on discovery candidates and known anticancer drugs. It fitted well the experimental data, providing reliable parameter estimates. On the basis of the parameters estimated in a first experiment, the model successfully predicted the response of tumors exposed to drugs given at different dose levels and/or schedules. It is, thus, possible to use the model prospectively, optimizing the design of new experiments.
Purpose: Here, we report results of the first phase I study of erdafitinib, a potent, oral pan-FGFR inhibitor. Patients and Methods: Patients age !18 years with advanced solid tumors for which standard antineoplastic therapy was no longer effective were enrolled (NCT01703481). Parts 2 to 4 employed molecular screening for activating FGFR genomic alterations. In patients with such alterations, two selected doses/schedules identified during part 1 doseescalation [9 mg once daily and 10 mg intermittently (7 days on/7 days off), as previously published (Tabernero JCO 2015;33:3401-8)] were tested. Results: The study included 187 patients. The most common treatment-related adverse events were hyperphosphatemia (64%), dry mouth (42%), and asthenia (28%), generally grade 1/2 severity. All cases of hyperphosphatemia were grade 1/2 except for 1 grade 3 event. Skin, nail, and eye changes were observed in 43%, 33%, and 28% of patients, respectively (mostly grade 1/2 and reversible after temporary dosing interruption). Urothelial carcinoma and cholangiocarcinoma were most responsive to erdafitinib, with objective response rates (ORR) of 46.2% (12/26) and 27.3% (3/11), respectively, in response-evaluable patients with FGFR mutations or fusions. All patients with urothelial carcinoma and cholangiocarcinoma who responded to erdafitinib carried FGFR mutations or fusions. Median response duration was 5.6 months for urothelial carcinoma and 11.4 months for cholangiocarcinoma. ORRs in other tumor types were <10%. Conclusions: Erdafitinib shows tolerability and preliminary clinical activity in advanced solid tumors with genomic changes in the FGFR pathway, at two different dosing schedules and with particularly encouraging responses in urothelial carcinoma and cholangiocarcinoma.
The predictive performance of physiologically‐based pharmacokinetics (PBPK) models for pharmacokinetics (PK) in renal impairment (RI) and hepatic impairment (HI) populations was evaluated using clinical data from 29 compounds with 106 organ impairment study arms were collected from 19 member companies of the International Consortium for Innovation and Quality in Pharmaceutical Development. Fifty RI and 56 HI study arms with varying degrees of organ insufficiency along with control populations were evaluated. For RI, the area under the curve (AUC) ratios of RI to healthy control were predicted within twofold of the observed ratios for > 90% (N = 47/50 arms). For HI, > 70% (N = 43/56 arms) of the hepatically impaired to healthy control AUC ratios were predicted within twofold. Inaccuracies, typically overestimation of AUC ratios, occurred more in moderate and severe HI. PBPK predictions can help determine the need and timing of organ impairment study. It may be suitable for predicting the impact of RI on PK of drugs predominantly cleared by metabolism with varying contribution of renal clearance. PBPK modeling may be used to support mild impairment study waivers or clinical study design.
Multidrug resistance mediated by ATP binding cassette (ABC) transporters such as P-glycoprotein (P-gp) represents a serious problem for the development of effective anticancer drugs. In addition, P-gp has been shown to reduce oral absorption, modulate hepatic, renal, or intestinal elimination, and restrict blood-brain barrier penetration of several drugs. Consequently, there is a great interest in anticipating whether drug candidates are P-gp substrates or inhibitors. In this respect, two different computational models have been developed. A method for discriminating P-gp substrates and nonsubstrates has been set up based on calculated molecular descriptors and multivariate analysis using a training set of 53 diverse drugs. These compounds were previously classified as P-gp substrates or nonsubstrates on the basis of the efflux ratio from Caco-2 permeability measurements. The program Volsurf was used to compute the compounds' molecular descriptors. The descriptors were correlated to the experimental classes using partial least squares discriminant analysis (PLSD). The model was able to predict correctly the behavior of 72% of an external set of 272 proprietary compounds. Thirty of the 53 previously mentioned drugs were also evaluated for P-gp inhibition using a calcein-AM (CAM) assay. On the basis of these additional P-gp functional data, a PLSD analysis using GRIND-pharmacophore-based descriptors was performed to model P-gp substrates having poor or no inhibitory activity versus inhibitors having no evidence of significant transport. The model was able to discriminate between 69 substrates and 56 inhibitors taken from the literature with an average accuracy of 82%. The model allowed also the identification of some key molecular features that differentiate a substrate from an inhibitor, which should be taken into consideration in the design of new candidate drugs. These two models can be implemented in a virtual screening funnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.