Bei hochbeanspruchten Stahlkonstruktionen wie Windenergieanlagen oder Brücken ist der Einsatz höchstfester Baustähle interessant, allerdings wird bei diesen Bauwerken meist der Ermüdungsnachweis maßgebend. Die in den zu verwendenden Regelwerken angegebenen Kerbfälle sind unabhängig von der Werkstofffestigkeit, sodass der Einsatz hoch‐ oder höchstfester Stähle bei einer Dominanz des Betriebsfestigkeitsnachweises keine Vorteile bei diesen Konstruktionen bietet. Durch den Einsatz einer Schweißnahtnachbehandlung mit höherfrequenten Hämmerverfahren (HFH) kann die Ermüdungsfestigkeit geschweißter Verbindungen jedoch entscheidend erhöht werden. Dabei zeigen alle bisherigen Untersuchungen eine zunehmende Effektivität der HFH‐Verfahren mit steigender Werkstofffestigkeit. Die neue DASt‐Richtlinie 026 regelt die Ermüdungsbemessung von Kerbdetails aus den Stahlsorten S235–S700 für die Anwendung von HFH‐Verfahren. Die Erweiterung auf höchstfeste Stähle bis S960 steht noch aus. Ebenso ist der Umgang mit geometrischen Imperfektionen außerhalb der Grenzwerte der Schweißnahtbewertungsgruppe B gemäß ISO 5817 bislang nicht geregelt. Im laufenden AiF‐FOSTA‐Forschungsprojekt 21410 BG (P 1505) sollen die Grundlagen für eine Erweiterung der DASt‐Richtlinie 026 auf höchstfeste Stähle bis S960 gelegt und der Einfluss von erhöhten Fertigungsimperfektionen auf die Ermüdungsfestigkeit HFH‐behandelter Schweißnähte gezielt untersucht werden. Im Folgenden wird das Vorhaben vorgestellt und erste Projektergebnisse gezeigt.
The influence of thermally sprayed aluminum coatings (Al99%; arc spraying) on the fatigue strength of gas metal arc welded (GMAW) non-alloyed structural steel specimens with respect to foundations for offshore wind turbines was investigated. Additionally, the corrosion protection effect of such coatings for water conditions similar to the Baltic Sea was determined. Wöhler tests were carried out on test specimens with different weld details in the as-welded condition as well as in the thermal spray coat under the consideration of different kinds of surface preparation (blast cleaning with corundum and grit). Substrate and coating were characterized by scanning electron microscopy and the influence on the residual stress states was determined. Corrosion rate monitoring via LPR measurements was carried out as well as the monitoring of the galvanic current between coated and uncoated steel to characterize the coatings’ sacrificial capability for minor defects. Fatigue strength was significantly increased through thermal spraying, especially for test specimens with welded transverse stiffeners (Δσc,var = 127 MPa after coating compared to Δσc,var = 89 MPa as welded). With a characteristic value of the stress range of Δσc,var = 153 MPa, the welded butt joint specimens already exhibited a high fatigue strength in the as-welded condition. The corrosion studies demonstrated that thermally sprayed Al99% coatings have a high resistance to corrosion in seawater environments and are suitable as planar sacrificial anodes sufficiently polarizing bare steel below 0.8 V. The combination of fatigue strength improvement and corrosion protection makes the thermally sprayed Al coatings promising for design and operation of e.g., offshore structures.
Due to recent failures of high‐strength steel bolts that were assembled in the splash zone and the submerged zone of offshore structures, the applicability of European steel construction standards regarding subsea use was investigated. It was found, that Eurocode 3 and EN 1090‐2 do not cover specific requirements for the installation of bolts under water. The influence of water on tightening, bolt preload and slip factor of faying surfaces were examined using special testing equipment. Different tightening me‐thods and alternative washer systems were applied. Lubrication of bolts used according to the standards mentioned does not seem suitable for underwater application. Self‐loosening and bolt overload are potential risks that come with under water installation of corresponding bolt assemblies. Design surface class of faying surfaces could be verified under water, but failure behavior was different when tested under water compared to regular testing conditions.
Arc brazing is an alternative joining technology well-suited for processing thermally sensitive materials and to produce mixed material connections. Due to the technological similarities of gas metal arc brazing to gas metal arc welding, it can be assumed that the process-related hydrogen input is of similar magnitude for both joining technologies. Since diffusible hydrogen is known to cause embrittlement in metallic materials, it is necessary to know the amount of diffusible hydrogen introduced by different manufacturing processes. Regarding the qualification of welding procedures, hydrogen ingress is an important factor to evaluate the risk of hydrogen-assisted cold cracking, especially when processing high-strength steels. For arc brazing, there is a lack of knowledge about the process-related hydrogen input. Hence, to study the influence of different brazing filler materials and varying levels of heat input on the diffusible hydrogen concentration in arc braze metal, a methodology to determine hydrogen content in arc weld metal in accordance with international standard ISO 3690 based on carrier gas hot extraction was applied to arc brazed specimens. Very low diffusible hydrogen concentrations of about HD = 0.1 to 0.3 mL/100 g were found for GMAB without significant influence of arc energy or filler metal used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.