Methylglyoxal (MG) is a reactive alpha-dicarbonyl that is thought to contribute to diabetic complications either as a direct toxin or as a precursor for advanced glycation end products. It is produced primarily from triose phosphates and is detoxified to D-lactate (DL) by the glyoxalase pathway. Because guanidino compounds can block dicarbonyl groups, we have investigated the effects of the diamino biguanide compound metformin and of hyperglycemia on MG and its detoxification products in type 2 diabetes. MG and DL were measured by high-performance liquid chromatography in plasma from 57 subjects with type 2 diabetes. Of these subjects, 27 were treated with diet, sulfonylureas, or insulin (nonmetformin), and 30 were treated with metformin; 28 normal control subjects were also studied. Glycemic control was determined by HbA1c. MG was significantly elevated in diabetic subjects versus the normal control subjects (189.3 +/- 38.7 vs. 123.0 +/- 37 nmol/l, P = 0.0001). MG levels were significantly reduced by high-dosage (1,500-2,500 mg/day) metformin (158.4 +/- 44.2 nmol/l) compared with nonmetformin (189.3 +/- 38.7 nmol/l, P = 0.03) or low-dosage (< or = 1,000 mg/day) metformin (210.98 +/- 51.0 nmol/l, P = 0.001), even though the groups had similar glycemic control. Conversely, DL levels were significantly elevated in both the low- and high-dosage metformin groups relative to the nonmetformin group (13.8 +/- 7.7 and 13.4 +/- 4.6 vs. 10.4 +/- 3.9 micromol/l, P = 0.03 and 0.06, respectively). MG correlated with rising HbA1c levels (R = 0.4, P = 0.03, slope = 13.2) in the nonmetformin subjects but showed no increase with worsening glycemic control in the high-dosage metformin group (R = 0.0004, P = 0.99, slope = 0.02). In conclusion, MG is elevated in diabetes and relates to glycemic control. Metformin reduces MG in a dose-dependent fashion and minimizes the effect of worsening glycemic control on MG levels. To the extent that elevated MG levels lead to their development, metformin treatment may protect against diabetic complications by mechanisms independent of its antihyperglycemic effect.
Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-13 C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and 13 C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.A number of microbes, including Pseudomonas aeruginosa, can utilize glycine betaine (GB) as a sole carbon, nitrogen, and energy source (17,35,41). GB, an important osmoprotectant for many bacteria (6), is available to organisms in a variety of environments (5,14,34,41). Free GB can be released by roots (9), microbes (14, 15), or decaying animal (20) and plant (10) matter. Alternatively, GB can be derived from choline or carnitine (4,5,12,15,20,36). Choline and carnitine can be found in many eukaryote-associated environments, and bacteria, including P. aeruginosa, can use phospholipases and choline phosphatases to release choline from phosphatidylcholine (30, 38). In P. aeruginosa, choline is oxidized to GB by a two-step process catalyzed by BetA and BetB (29,36), while carnitine is predicted to be reduced and deacetylated by uncharacterized enzymes, ultimately yielding GB (16).The aerobic catabolism of GB in bacteria is best understood in Sinohizobium (35), Corynebacterium (8, 37), and Arthrobacter species (24). The data from these studies suggest that GB catabolism occurs via serial demethylation that forms dimethylglycine (DMG), then sarcosine (also called monomethylglycine), and finally glycine (Fig. 1). Thin-layer chromatographic analyses indicated that in P. aeruginosa DMG and sarcosine are also intermediates formed during GB catabolism (11). Furthermore, in the same study, a proteomics analysis of P. aeruginosa cul...
We have identified a point mutation in Npc1 that creates a novel mouse model (Npc1(nmf164)) of Niemann-Pick type C1 (NPC) disease: a single nucleotide change (A to G at cDNA bp 3163) that results in an aspartate to glycine change at position 1005 (D1005G). This change is in the cysteine-rich luminal loop of the NPC1 protein and is highly similar to commonly occurring human mutations. Genetic and molecular biological analyses, including sequencing the Npc1(spm) allele and identifying a truncating mutation, confirm that the mutation in Npc1(nmf164) mice is distinct from those in other existing mouse models of NPC disease (Npc1(nih), Npc1(spm)). Analyses of lifespan, body and spleen weight, gait and other motor activities, as well as acoustic startle responses all reveal a more slowly developing phenotype in Npc1(nmf164) mutant mice than in mice with the null mutations (Npc1(nih), Npc1(spm)). Although Npc1 mRNA levels appear relatively normal, Npc1(nmf164) brain and liver display dramatic reductions in Npc1 protein, as well as abnormal cholesterol metabolism and altered glycolipid expression. Furthermore, histological analyses of liver, spleen, hippocampus, cortex and cerebellum reveal abnormal cholesterol accumulation, glial activation and Purkinje cell loss at a slower rate than in the Npc1(nih) mouse model. Magnetic resonance imaging studies also reveal significantly less demyelination/dysmyelination than in the null alleles. Thus, although prior mouse models may correspond to the severe infantile onset forms of NPC disease, Npc1(nmf164) mice offer many advantages as a model for the late-onset, more slowly progressing forms of NPC disease that comprise the large majority of human cases.
OBJECTIVE -Chronic hyperglycemia is known to increase tissue glycation and diabetic complications, but controversy exists regarding the independent role of increased postprandial glucose excursions. To address this question, we have studied the effect of postprandial glycemic excursions (PPGEs) on levels of methylglyoxal (MG) and 3-deoxyglucosone (3-DG), two highly reactive precursors of advanced glycation end products (AGEs).RESEARCH DESIGN AND METHODS -We performed 4-month crossover studies on 21 subjects with type 1 diabetes and compared the effect of premeal insulin lispro or regular insulin on PPGEs and MG/3-DG excursions. PPGE was determined after standard test meal (STMs) and by frequent postprandial glucose monitoring. HbA 1c and postprandial MG and D-lactate were measured by HPLC, whereas 3-DG was determined by gas chromatography/mass spectroscopy.RESULTS -Treatment with insulin lispro resulted in a highly significant reduction in PPGEs relative to the regular insulin-treated group (P ϭ 0.0005). However, HbA 1c levels were similar in the two groups, and no relationship was observed between HbA 1c and PPGE (P ϭ 0.93). Significant postprandial increases in MG, 3-DG, and D-lactate occurred after the STM. Excursions of MG and 3-DG were highly correlated with levels of PPGE (R ϭ 0.55, P ϭ 0.0002 and R ϭ 0.61, P ϭ 0.0004; respectively), whereas a significant inverse relationship was seen between PPGE and D-lactate excursions (R ϭ 0.40, P ϭ 0.01). Conversely, no correlation was observed between HbA1c and postprandial MG, 3-DG, or D-lactate levels.CONCLUSIONS -Increased production of MG and 3-DG occur with greater PPGE, whereas HbA1c does not reflect these differences. Reduced PPGE also leads to increased production of D-lactate, indicating a role for increased detoxification in reducing MG levels. The higher postprandial levels of MG and 3-DG observed with greater PPGE may provide a partial explanation for the adverse effects of glycemic lability and support the value of agents that reduce glucose excursions. Diabetes Care 24:726 -732, 2001
Nonenzymatic glycation appears to be an important factor in the pathogenesis of diabetic complications. Key early intermediates in this process are fructosamines, such as protein-bound fructoselysines. In this report, we describe the purification and characterization of a mammalian fructosamine-3-kinase (FN3K), which phosphorylates fructoselysine (FL) residues on glycated proteins, to FL-3-phosphate (FL3P). This phosphorylation destablilizes the FL adduct and leads to its spontaneous decomposition, thereby reversing the nonenzymatic glycation process at an early stage. FN3K was purified to homogeneity from human erythrocytes and sequenced by means of electrospray tandem mass spectrometry. The protein thus identified is a 35-kDa monomer that appears to be expressed in all mammalian tissues. It has no significant homology to other known proteins and appears to be encoded by genomic sequences located on human chromosomes 1 and 17. The lability of FL3P, the high affinity of FN3K for FL, and the wide distribution of FN3K suggest that the function of this enzyme is deglycation of nonenzymatically glycated proteins. Because the condensation of glucose and lysine residues is an ubiquitous and unavoidable process in homeothermic organisms, a deglycation system mediated by FN3K may be an important factor in protecting cells from the deleterious effects of nonenzymatic glycation. Our sequence data of FN3K are in excellent agreement with a recent report on this enzyme by Delpierre et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.