Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).
It is important to characterize the uncertainties surrounding flood hazards in order to understand the impacts on multi-sector dynamics and to inform the design of risk-management strategies (
Floods drive dynamic and deeply uncertain risks for people and infrastructures. Uncertainty characterization is a crucial step in improving the predictive understanding of multi-sector dynamics and the design of risk-management strategies. Current approaches to estimate flood hazards often sample only a relatively small subset of the known unknowns, for example the uncertainties surrounding the model parameters. This approach neglects the impacts of key uncertainties on hazards and system dynamics. Here we mainstream a recently developed method for Bayesian inference to calibrate a computationally expensive distributed hydrologic model. We compare three different calibration approaches: (1) stepwise line search, (2) precalibration or screening, and (3) the new Fast Model Calibrations (FaMoS) approach. FaMoS deploys a particle-based approach that takes advantage of the massive parallelization afforded by modern high-performance computing systems. We quantify how neglecting parametric uncertainty and data discrepancy can drastically underestimate extreme flood events and risks. Precalibration improves prediction skill score over a stepwise line search. The Bayesian calibration improves the uncertainty characterization of model parameters and flood risk projections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.