We report on a novel type of Bi-doped crystal that exhibits ultrabroadband photoluminescence in the near infrared (NIR). Emission centers can be generated and degenerated reversibly by annealing the material in CO atmosphere and air, respectively, indicating that emission is related to the presence of Bi-species in low valence states. Correlating static and dynamic excitation and emission data with the size and charge of available lattice sites suggests that two types of Bi(0)-species, each located on one of the two available Ba(2+) lattice sites, are responsible for NIR photoemission. This is further confirmed by the absence of NIR emission in polycrystalline Ca(2)P(2)O(7):Bi and Sr(2)P(2)O(7):Bi. Excitation is assigned to transitions between the doubly degenerated ground state (4)S(3/2) and the degenerated excited levels (2)D(3/2), (2)D(5/2) and (2)P(1/2), respectively. NIR emission is attributed to (2)D(3/2)?(4)S(3/2). The NIR emission center can coexist with Bi(2+) species. Then, also Bi(2+) is accommodated on one of the two Ba(2+)-sites. Energy transfer between Bi(2+) ions occurs within a critical distance of 25.9 A.
The phase instability induced during the transfer of radio frequency and optical clock signals through the turbulent atmosphere was measured in a rooftop experiment. Radio frequency intensity modulation of a laser to transmit signals over 100 m results in an Allan deviation of 1.31x10(-10) at 1 s. Optical transfer is more accurate at 1.68x10(-13) at 1 s. As a consequence, fiber links are more suitable for the transfer of optical frequencies over very long distances while free space transmission might find applications in short distances of less than 1 km.
We demonstrate a narrow-line fiber loop laser using erbium-doped fiber as the gain material, stabilized by using a microsphere as a transmissive frequency selective element. Stable lasing with a linewidth of 170 kHz is observed, limited by the experimental spectral resolution. A linear increase in output power and a redshift of the lasing mode were also observed with increasing pump power. Its potential applications are discussed.
A fiber laser is stabilized by introducing a calcium fluoride (CaF(2)) whispering-gallery-mode resonator as a filtering element in a ring cavity. It is set up using a semiconductor optical amplifier as a gain medium. The resonator is critically coupled through prisms, and used as a filtering element to suppress the laser linewidth. A three-cornered-hat method is used and shows a stability of 10(-11) after 10 micros. Using the self-heterodyne beat technique, the linewidth is determined to be 13 kHz. This implies an enhancement factor of 10(3) with respect to the passive cavity linewidth.
We utilize a high quality calcium fluoride whispering-gallerymode resonator to passively stabilize a simple erbium doped fiber ring laser with an emission frequency of 196 THz (wavelength 1530 nm) to an instantaneous linewidth below 650 Hz. This corresponds to a relative stability of 3.3 × 10 −12 over 16 µs. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered-hat method. We further show that the lasers are finely tunable throughout the erbium gain region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.