A three-dimensional ECVT sensing technique is applied to imaging complex slugging phenomena of a gas−solid fluidized bed under ambient and elevated temperature conditions. The study indicates that the time interval between rising slugs decreases with an increase in the gas velocity, reaching a nearly steady time interval value of about 1 s between two slugs when the gas velocity is ∼1.7 m/s above the minimum fluidization velocity. The fluidized bed behaves as a bubbling fluidized bed at low gas velocities. In slugging regime, the slug rise velocity increases with the gas velocity. A mechanistic analysis of forces around the dense phase solid particles suggests that the relationship between the slug rise velocity and the gas velocity for the square-nosed slugging bed is not strictly linear and is highly related to the interparticle forces, internal friction of particles, and gas velocity in addition to the wall stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.