This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
During the onset of the COVID-19 pandemic, the COVIDiSTRESS Consortium launched an open-access global survey to understand and improve individuals’ experiences related to the crisis. A year later, we extended this line of research by launching a new survey to address the dynamic landscape of the pandemic. This survey was released with the goal of addressing diversity, equity, and inclusion by working with over 150 researchers across the globe who collected data in 48 languages and dialects across 137 countries. The resulting cleaned dataset described here includes 15,740 of over 20,000 responses. The dataset allows cross-cultural study of psychological wellbeing and behaviours a year into the pandemic. It includes measures of stress, resilience, vaccine attitudes, trust in government and scientists, compliance, and information acquisition and misperceptions regarding COVID-19. Open-access raw and cleaned datasets with computed scores are available. Just as our initial COVIDiSTRESS dataset has facilitated government policy decisions regarding health crises, this dataset can be used by researchers and policy makers to inform research, decisions, and policy.
The emergence of big data combined with the technical developments in Artificial Intelligence has enabled novel opportunities for autonomous and continuous decisionsupport. While initial work has begun to explore how human morality can inform the decision-making of future Artificial Intelligence applications, these approaches typically consider human morals as static and immutable. In this work, we present an initial exploration of the effect of context on human morality from a Utilitarian perspective. Through an online narrative transportation study, in which participants are primed with either a positive story, a negative story, or a control condition (N = 82), we collect participants' perceptions on technology that has to deal with moral judgment in changing contexts. Based on an in-depth qualitative analysis of participant responses, we contrast participant perceptions to related work on Fairness, Accountability, and Transparency. Our work highlights the importance of contextual morality for Artificial Intelligence and identifies opportunities for future work through a FACT-based (Fairness, Accountability, Context, and Transparency) perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.