We evaluate the situational impairments caused by cold ambient temperature on fine-motor movement and vigilance during mobile interaction. For this purpose, we tested two mobile phone applications that measure fine motor skills and vigilance in controlled temperature settings. Our results show that cold adversely affected participants' fine-motor skills performance, but not vigilance. Based on our results we highlight the importance of correcting measurements when investigating performance of cognitive tasks to take into account the physical element of the tasks. Finally, we identify a number of design recommendations from literature that can mitigate the adverse effect of cold ambiance on interaction with mobile devices.
In this paper, we demonstrate the existence of a bidirectional causal relationship between smartphone application use and user emotions. In a two-week long in-the-wild study with 30 participants we captured 502,851 instances of smartphone application use in tandem with corresponding emotional data from facial expressions. Our analysis shows that while in most cases application use drives user emotions, multiple application categories exist for which the causal effect is in the opposite direction. Our findings shed light on the relationship between smartphone use and emotional states. We furthermore discuss the opportunities for research and practice that arise from our findings and their potential to support emotional well-being.
We seek to quantify smartwatch use, and establish differences and similarities to smartphone use. Our analysis considers use traces from 307 users that include over 2.8 million notifications and 800,000 screen usage events, and we compare our findings to previous work that quantifies smartphone use. The results show that smartwatches are used more briefly and more frequently throughout the day, with half the sessions lasting less than 5 seconds. Interaction with notifications is similar across both types of devices, both in terms of response times and preferred application types. We also analyse the differences between our smartwatch dataset and a dataset aggregated from four previously conducted smartphone studies. The similarities and differences between smartwatch and smartphone use suggest effect on usage that go beyond differences in form factor.
Background Hand hygiene is a crucial and cost-effective method to prevent health care–associated infections, and in 2009, the World Health Organization (WHO) issued guidelines to encourage and standardize hand hygiene procedures. However, a common challenge in health care settings is low adherence, leading to low handwashing quality. Recent advances in machine learning and wearable sensing have made it possible to accurately measure handwashing quality for the purposes of training, feedback, or accreditation. Objective We measured the accuracy of a sensor armband (Myo armband) in detecting the steps and duration of the WHO procedures for handwashing and handrubbing. Methods We recruited 20 participants (10 females; mean age 26.5 years, SD 3.3). In a semistructured environment, we collected armband data (acceleration, gyroscope, orientation, and surface electromyography data) and video data from each participant during 15 handrub and 15 handwash sessions. We evaluated the detection accuracy for different armband placements, sensor configurations, user-dependent vs user-independent models, and the use of bootstrapping. Results Using a single armband, the accuracy was 96% (SD 0.01) for the user-dependent model and 82% (SD 0.08) for the user-independent model. This increased when using two armbands to 97% (SD 0.01) and 91% (SD 0.04), respectively. Performance increased when the armband was placed on the forearm (user dependent: 97%, SD 0.01; and user independent: 91%, SD 0.04) and decreased when placed on the arm (user dependent: 96%, SD 0.01; and user independent: 80%, SD 0.06). In terms of bootstrapping, user-dependent models can achieve more than 80% accuracy after six training sessions and 90% with 16 sessions. Finally, we found that the combination of accelerometer and gyroscope minimizes power consumption and cost while maximizing performance. Conclusions A sensor armband can be used to measure hand hygiene quality relatively accurately, in terms of both handwashing and handrubbing. The performance is acceptable using a single armband worn in the upper arm but can substantially improve by placing the armband on the forearm or by using two armbands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.