Substantial evidence suggests that mind-wandering typically occurs at a significant cost to performance. Mind-wandering-related deficits in performance have been observed in many contexts, most notably reading, tests of sustained attention, and tests of aptitude. Mind-wandering has been shown to negatively impact reading comprehension and model building, impair the ability to withhold automatized responses, and disrupt performance on tests of working memory and intelligence. These empirically identified costs of mind-wandering have led to the suggestion that mind-wandering may represent a pure failure of cognitive control and thus pose little benefit. However, emerging evidence suggests that the role of mind-wandering is not entirely pernicious. Recent studies have shown that mind-wandering may play a crucial role in both autobiographical planning and creative problem solving, thus providing at least two possible adaptive functions of the phenomenon. This article reviews these observed costs and possible functions of mind-wandering and identifies important avenues of future inquiry.
During tasks that require continuous engagement, the mind alternates between mental states of focused attention and mind-wandering. Existing research has assessed the functional connectivity of intrinsic brain networks underlying the experience and training of these mental states using "static" approaches that assess connectivity across an entire task. To disentangle the different functional connectivity between brain regions that occur as the mind fluctuates between discrete brain states, we employed a dynamic functional connectivity approach that characterized brain activity using a sliding window. This approach identified distinct states of functional connectivity between regions of the executive control, salience, and default networks during a task requiring sustained attention to the sensations of breathing. The frequency of these distinct brain states demonstrated opposing correlations with dispositional mindfulness, suggesting a correspondence to the mental states of focused attention and mind-wandering. We then determined that an intervention emphasizing the cultivation of mindfulness increased the frequency of the state that had been associated with a greater propensity for focused attention, especially for those who improved most in dispositional mindfulness. These findings provide supporting evidence that mind-wandering involves the corecruitment of brain regions within the executive and default networks. More generally, this work illustrates how emerging neuroimaging methods may allow for the characterization of discrete brain states based on patterns of functional connectivity even when external indications of these states are difficult or impossible to measure.
A broad set of brain regions has been associated with the experience and training of mindfulness. Many of these regions lie within key intrinsic brain networks, including the executive control, salience, and default networks. In this paper, we review the existing literature on the cognitive neuroscience of mindfulness through the lens of network science. We describe the characteristics of the intrinsic brain networks implicated in mindfulness and summarize the relevant findings pertaining to changes in functional connectivity (FC) within and between these networks. Convergence across these findings suggests that mindfulness may be associated with increased FC between two regions within the default network: the posterior cingulate cortex and the ventromedial prefrontal cortex. Additionally, extensive meditation experience may be associated with increased FC between the insula and the dorsolateral prefrontal cortex. However, little consensus has emerged within the existing literature owing to the diversity of operational definitions of mindfulness, neuroimaging methods, and network characterizations. We describe several challenges to develop a coherent cognitive neuroscience of mindfulness and to provide detailed recommendations for future research.
No abstract
Scientific understanding of how much the adult brain can be shaped by experience requires examination of how multiple influences combine to elicit cognitive, affective, and neural plasticity. Using an intensive multifaceted intervention, we discovered that substantial and enduring improvements can occur in parallel across multiple cognitive and neuroimaging measures in healthy young adults. The intervention elicited substantial improvements in physical health, working memory, standardized test performance, mood, self-esteem, self-efficacy, mindfulness, and life satisfaction. Improvements in mindfulness were associated with increased degree centrality of the insula, greater functional connectivity between insula and somatosensory cortex, and reduced functional connectivity between posterior cingulate cortex (PCC) and somatosensory cortex. Improvements in working memory and reading comprehension were associated with increased degree centrality of a region within the middle temporal gyrus (MTG) that was extensively and predominately integrated with the executive control network. The scope and magnitude of the observed improvements represent the most extensive demonstration to date of the considerable human capacity for change. These findings point to higher limits for rapid and concurrent cognitive, affective, and neural plasticity than is widely assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.