Degraded tropical peatlands lack tree cover and are often subject to seasonal flooding and repeated burning. These harsh environments for tree seedlings to survive and grow are therefore challenging to revegetate. Knowledge on species performance from previous plantings represents an important evidence base to help guide future tropical peat swamp forest (TPSF) restoration efforts. We conducted a systematic review of the survival and growth of tree species planted in degraded peatlands across Southeast Asia to examine (1) species differences, (2) the impact of seedling and site treatments on survival and growth and (3) the potential use of plant functional traits to predict seedling survival and growth rates. Planted seedling monitoring data were compiled through a systematic review of journal articles, conference proceedings, reports, theses and unpublished datasets. In total, 94 study‐sites were included, spanning three decades from 1988 to 2019, and including 141 indigenous peatland tree and palm species. Accounting for variable planting numbers and monitoring durations, we analysed three measures of survival and growth: (1) final survival weighted by the number of seedlings planted, (2) half‐life, that is, duration until 50% mortality and (3) relative growth rates (RGR) corrected for initial planting height of seedlings. Average final survival was 62% and half‐life was 33 months across all species, sites and treatments. Species differed significantly in survival and half‐life. Seedling and site treatments had small effects with the strongest being higher survival of mycorrhizal fungi inoculated seedlings; lower survival, half‐life and RGR when shading seedlings; and lower RGR and higher survival when fertilising seedlings. Leaf nutrient and wood density traits predicted TPSF species survival, but not half‐life and RGR. RGR and half‐life were negatively correlated, meaning that slower growing species survived for longer. Synthesis and applications. To advance tropical peat swamp reforestation requires expanding the number and replication of species planted and testing treatments by adopting control vs. treatment experimental designs. Species selection should involve slower growing species (e.g. Lophopetalum rigidum, Alstonia spatulata, Madhuca motleyana) that survive for longer and explore screening species based on functional traits associated with nutrient acquisition, flooding tolerance and recovery from fire.
Selective immune cell isolation from diluted blood achieved with antibody-coated micropillar and micro-sieve structures in a microfluidic system.
In this work, we aim to observe and study the physics of bacteria and cancer cells pearl chain formation under dielectrophoresis (DEP). Experimentally, we visualized the formation of Bacillus subtilis bacterial pearl chain and human breast cancer cell (MCF-7) chain under positive and negative dielectrophoretic force, respectively. Through a simple simulation with creeping flow, AC/DC electric fields, and particle tracing modules in COMSOL, we examined the mechanism by which bacteria self-organize into a pearl chain across the gap between two electrodes via DEP. Our simulation results reveal that the region of greatest positive DEP force shifts from the electrode edge to the leading edge of the pearl chain, thus guiding the trajectories of free-flowing particles toward the leading edge via positive DEP. Our findings additionally highlight the mechanism why the free-flowing particles are more likely to join the existing pearl chain rather than starting a new pearl chain. This phenomenon is primarily due to the increase in magnitude of electric field gradient, and hence DEP force exerted, with the shortening gap between the pearl chain leading edge and the adjacent electrode. The findings shed light on the observed behavior of preferential pearl chain formation across electrode gaps.
Background and Aims: Pharmaceutical therapy for NASH is associated with lipid modulation, but the consensus on drug treatment is limited and lacks comparative analysis of effectiveness. A network meta-analysis was conducted to compare NASH drug classes in lipid modulation. Methods: Online databases were searched for randomized controlled trails (RCTs) evaluating NASH treatments in biopsy-proven NASH patients. Treatments were classified into four groups:(1) inflammation, (2) energy, (3) bile acids, and (4) fibrosis based on the mechanism of action. A Bayesian network analysis was conducted with outcome measured by mean difference (MD) with credible intervals (Crl) and surface under the cumulative ranking curve (SUCRA). Results: Fortyfour RCTs were included in the analysis. Bile acid modulating treatments (MD: 0.05, Crl: 0.03-0.07) were the best treatment for improvement in high-density lipid (HDL) cholesterol, followed by treatments modulating energy (MD: 0.03, Crl: 0.02-0.04) and fibrosis (MD: 0.01, Crl: −0.12 to 0.14) compared with placebo. The top three treatments for reduction in triglycerides were treatments modulating energy (MD: −0.46, Crl: −0.49 to −0.43), bile acids (MD: −0.22, Crl: −0.35 to −0.09), and inflammation (MD: −0.08, Crl: −0.13 to −0.03) compared with placebo. SUCRA found treatment modulating fibrosis (MD: −1.27, Crl: −1.76 to −0.79) was the best treatment for reduction in low-density lipid (LDL) cholesterol followed by treatment modulating inflammation (MD: −1.03, Crl: −1.09 to −0.97) and energy (MD: −0.37, Crl: −0.39 to −0.34) compared with placebo, but LDL cholesterol was worsened by treatments modulating bile acids. Conclusions: Network analysis comparing the class effects of dyslipidemia modulation in NASH found that treatment targets can include optimization of atherogenic dyslipidemia. Future studies are required to evaluate the cardiovascular outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.