Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria.
BackgroundProgrammed cell death (PCD) is an essential process for the life cycle of all multicellular organisms. In higher plants however, relatively little is known about the cascade of genes and signalling molecules responsible for the initiation and execution of PCD. To aid with the discovery and analysis of plant PCD regulators, we have designed a novel cell death assay based on low cytosolic pH as a marker of PCD.ResultsThe acidification that occurs in the cytosol during plant PCD was monitored by way of the extinction of YFP fluorescence at low pH. This fluorescence was recovered experimentally when bringing the intracellular pH back to 7, demonstrating that there was no protein degradation of YFP. Because it uses YFP, the assay is none-destructive, does not interfere with the PCD process and allows time-lapse studies to be carried out. In addition, changes of sub-cellular localisation can be visualised during PCD using the protein of interest fused to RFP. Coupled to a transient expression system, this pH-based assay can be used to functionally analyse genes involved in PCD, using point mutations or co-expressing PCD regulators. Transfecting mBAX and AtBI-1in onion epidermal cells showed that the pH shift is downstream of PCD suppression by AtBI-1. In addition, this method can be used to score PCD in tissues of stably transformed transgenic lines. As proof of principle, we show the example of YFP extinction during xylogenesis in Arabidopsis. This demonstrates that the assay is applicable to PCD studies in a variety of tissues.ConclusionsThe observation that YFP fluorescence is lost during the plant PCD process provides a new tool to study the genetic regulation and cell biology of the process. In addition, plant cell biologists should make a note of this effect of PCD on YFP fluorescence to avoid misinterpretation of their data and to select a pH insensitive reporter if appropriate. This method represents an efficient and streamlined tool expected to bring insights on the process leading to the pH shift occurring during PCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.