In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
Many studies have shown that nonintegrable systems with modulational instabilities constrained by more than one conservation law exhibit universal long time behavior involving large coherent structures in a sea of small fluctuations. We show how this behavior can be explained in detail by simple thermodynamic arguments.
Many nonlinear lattice systems exhibit high-amplitude localized structures, or discrete breathers. Such structures emerge in the discrete nonlinear Schrödinger equation when the energy is above a critical threshold. This paper studies the statistical mechanics at the transition and constructs the probability distribution in the regime where breathers emerge. The entropy as a function of the energy is nonanalytic at the transition. The entropy is independent of the energy in the regime of breathers above the transition.
The localization of energy in the discrete nonlinear Schrödinger equation is explained with statistical methods. The partition function and the entropy of the system are computed for low-amplitude initial conditions. Detailed predictions for the long-time solution are derived. Localized high-amplitude excitations absorb a surplus of energy when they emerge as a by-product of the production of entropy in the small fluctuations. The thermodynamic interpretation of this process applies to many dynamical systems with two conserved quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.