We consider the following probabilistic model of a graph on n labeled vertices. First choose a random graph G(n, 1/2) and then choose randomly a subset Q of vertices of size k and force it to be a clique by joining every pair of vertices of Q by an edge. The problem is to give a polynomial time algorithm for finding this hidden clique almost surely for various values of k. This question was posed independently, in various variants, by Jerrum and by Kučera. In this paper we present an efficient algorithm for all k > cn 0.5 , for any fixed c > 0, thus improving the trivial case k > cn 0.5 (log n) 0.5. The algorithm is based on the spectral properties of the graph.
In this paper we study degree conditions which guarantee the existence of perfect matchings and perfect fractional matchings in uniform hypergraphs. We reduce this problem to an old conjecture by Erdős on estimating the maximum number of edges in a hypergraph when the (fractional) matching number is given, which we are able to solve in some special cases using probabilistic techniques. Based on these results, we obtain some general theorems on the minimum d-degree ensuring the existence of perfect (fractional) matchings. In particular, we asymptotically determine the minimum vertex degree which guarantees a perfect matching in 4-uniform and 5-uniform hypergraphs. We also discuss an application to a problem of finding an optimal data allocation in a distributed storage system.
For a graph H and an integer n, the Turán number is the maximum possible number of edges in a simple graph on n vertices that contains no copy of H. H is r-degenerate if every one of its subgraphs contains a vertex of degree at most r. We prove that, for any fixed bipartite graph H in which all degrees in one colour class are at most r, . This is tight for all values of r and can also be derived from an earlier result of Füredi. We also show that there is an absolute positive constant c such that, for every fixed bipartite r-degenerate graph H, This is motivated by a conjecture of Erdős that asserts that, for every such H, For two graphs G and H, the Ramsey number is the minimum number n such that, in any colouring of the edges of the complete graph on n vertices by red and blue, there is either a red copy of G or a blue copy of H. Erdős conjectured that there is an absolute constant c such that, for any graph G with m edges, . Here we prove this conjecture for bipartite graphs G, and prove that for general graphs G with m edges, for some absolute positive constant c.These results and some related ones are derived from a simple and yet surprisingly powerful lemma, proved, using probabilistic techniques, at the beginning of the paper. This lemma is a refined version of earlier results proved and applied by various researchers including Rödl, Kostochka, Gowers and Sudakov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.