Geometrical defects are known to have a detrimental influence on the high cycle fatigue resistance of metallic alloys, smaller defects being less harmful. In this experimental work, the influence of the defect size on the high cycle fatigue behavior of polycrystalline aluminium with different grain sizes is investigated, to better understand the role of internal length scales. Firstly, different thermomechanical treatments are applied to obtain aluminium samples with either small (100 µm) or large (1000 µm) grains. The samples are used for preparing fatigue specimens, with either small (100 µm) or large (1000 µm) hemispherical defects. Fully reversed stress-controlled fatigue tests are then carried out.
In this work, the influence of the geometrical defect size on the high cycle fatigue behavior of polycrystalline aluminium with different grain sizes is investigated, to better understand the role of internal length scales. Two sizes of grains and defect are used: 100 μm and 1000 μm, the grain size being controlled with thermomechanical treatments. Fully reversed stress-controlled fatigue tests are then carried out. According to fatigue test results, surface crack initiation is delayed when the grain size is reduced, while an approximation of the fatigue limit shows that it is not much influenced by the average grain size. The relative defect diameter (compared to the grain size) seems to be the leading parameter influencing fatigue crack initiation from a defect. Finally, Electron BackScattered Diffraction (EBSD) maps are collected for specimens with large grains and small defects. Fatigue crack initiation from a defect is found to be strongly impacted by the crystallographic orientation of the surrounding grain, crack initiation preferably occurring in crystals being favorably oriented for plastic slip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.