International audienceSubduction infancy corresponds to the first few million years following subduction initiation, when slabs start their descent into the mantle. It coincides with the transient (yet systematic) transfer of material from the top of the slab to the upper plate, as witnessed by metamorphic soles welded beneath obducted ophiolites. Combining structure–lithology–pressure–temperature–time data from metamorphic soles with flow laws derived from experimental rock mechanics, this study highlights two main successive rheological switches across the subduction interface (mantle wedge vs. basalts, then mantle wedge vs. sediments; at ∼800 °C and ∼600 °C, respectively), during which interplate mechanical coupling is maximized by the existence of transiently similar rheologies across the plate contact. We propose that these rheological switches hinder slab penetration and are responsible for slicing the top of the slab and welding crustal pieces (high- then low-temperature metamorphic soles) to the base of the mantle wedge during subduction infancy. This mechanism has implications for the rheological properties of the crust and mantle (and for transient episodes of accretion/exhumation of HP-LT rocks in mature subduction systems) and highlights the role of fluids in enabling subduction to overcome the early resistance to slab penetration
International audienceXMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure-temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure-temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to $165,000 analyses yield estimates for the eclogitic pressure-temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure- temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure-temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion
International audienceMetamorphic soles are tectonic slices welded beneath most large-scale ophiolites. These slivers of oceanic crust metamorphosed up to granulite facies conditions are interpreted as forming during the first million years of intra-oceanic subduction following heat transfer from the incipient mantle wedge towards the top of the subducting plate. This study reappraises the formation of metamorphic soles through detailed field and petrological work on three key sections from the Semail ophiolite (Oman and United Arab Emirates). Based on thermobarometry and thermodynamic modelling, it is shown that metamorphic soles do not record a continuous temperature gradient, as expected from simple heating by the upper plate or by shear heating as proposed in previous studies. The upper, high-temperature metamorphic sole is subdivided in at least two units, testifying to the stepwise formation, detachment and accretion of successive slices from the down-going slab to the mylonitic base of the ophiolite. Estimated peak pressure-temperature conditions through the metamorphic sole, from top to bottom, are 850°C and 1 GPa, 725°C and 0.8 GPa and 530°C and 0.5 GPa. These estimates appear constant within each unit but differing between units by 100 to 200°C and ~0.2 GPa. Despite being separated by hundreds of kilometres below the Semail ophiolite and having contrasting locations with respect to the ridge axis position, metamorphic soles show no evidence for significant petrological variations along strike. These constraints allow us to refine the tectonic–petrological model for the genesis of metamorphic soles, formed via the stepwise stacking of several homogeneous slivers of oceanic crust and its sedimentary cover. Metamorphic soles result not so much from downward heat transfer (ironing effect) as from progressive metamorphism during strain localization and cooling of the plate interface. The successive thrusts originate from rheological contrasts between the sole, initially the top of the subducting slab, and the peridotite above as the plate interface progressively cools. These findings have implications for the thickness, the scale and the coupling state at the plate interface during the early history of subduction/obduction systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.