Autofluorescent protein tags represent one of the major and, perhaps, most powerful tools in modern cell biology for visualization of various cellular processes in vivo. In addition, advances in confocal microscopy and the development of autofluorescent proteins with different excitation and emission spectra allowed their simultaneous use for detection of multiple events in the same cell. Nevertheless, while autofluorescent tags are widely used in plant research, the need for a versatile and comprehensive set of vectors specifically designed for fluorescent tagging and transient and stable expression of multiple proteins in plant cells from a single plasmid has not been met by either the industrial or the academic communities. Here, we describe a new modular satellite (SAT) vector system that supports N- and C-terminal fusions to five different autofluorescent tags, EGFP, EYFP, Citrine-YFP, ECFP, and DsRed2. These vectors carry an expanded multiple cloning site that allows easy exchange of the target genes between different autofluorescence tags, and expression of the tagged proteins is controlled by constitutive promoters, which can be easily replaced with virtually any other promoter of interest. In addition, a series of SAT vectors has been adapted for high throughput Gateway recombination cloning. Furthermore, individual expression cassettes can be assembled into Agrobacterium binary plasmids, allowing efficient transient and stable expression of multiple autofluorescently tagged proteins from a single vector following its biolistic delivery or Agrobacterium-mediated genetic transformation.
In order to study the effect of glucose on the differentiation of cultured human colon cancer cells, a subpopulation of HT-29 cells was selected for its capacity to grow in the total absence of sugar. These cells (Glc-cells) exhibit, after confluency, an enterocytic differentiation, in contrast to cells grown with glucose (Glc+ cells), which always remain undifferentiated. The differentiation is characterized by a polarization of the cell layer with apical brush borders and tight junctions, and by the presence of sucrase-isomaltase. The differentiation of Glc- cells is reversible: the addition of glucose to postconfluent cultures of Glc- cells results in an inhibiting effect on the expression of sucrase-isomaltase; switching growing cultures of Glc- cells to the Glc+ medium for several passages results in a progressive reversion to the undifferentiated state, which is completed after seven passages. The dedifferentiation process is associated with a parallel, passage-related, increase in the rates of glucose consumption and lactic acid production, and decreases of intracellular glycogen content, which return to the values of the undifferentiated original Glc+ cells. The values of these metabolic parameters are correlated, at each passage, with the degree of dedifferentiation of the cells. When these dedifferentiated cells, after having been cultured in Glc+ medium for 20 passages, are switched back to the Glc- medium, they readily grow without mortality, and reexpress the same enterocytic differentiation as the parent Glc- cells. These results show that the capacity of this subpopulation to grow and differentiate in the absence of sugar is a stable characteristic. They further suggest that glucose metabolism interferes with the program of differentiation of HT-29 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.