BackgroundPulmonary function measurements are important when studying respiratory disease models. Both resistance and compliance have been used to assess lung function in mice. Yet, it is not always clear how these parameters relate to forced expiration (FE)-related parameters, most commonly used in humans. We aimed to characterize FE measurements in four well-established mouse models of lung diseases.MethodDetailed respiratory mechanics and FE measurements were assessed concurrently in Balb/c mice, using the forced oscillation and negative pressure-driven forced expiration techniques, respectively. Measurements were performed at baseline and following increasing methacholine challenges in control Balb/c mice as well as in four disease models: bleomycin-induced fibrosis, elastase-induced emphysema, LPS-induced acute lung injury and house dust mite-induced asthma.ResultsRespiratory mechanics parameters (airway resistance, tissue damping and tissue elastance) confirmed disease-specific phenotypes either at baseline or following methacholine challenge. Similarly, lung function defects could be detected in each disease model by at least one FE-related parameter (FEV0.1, FEF0.1, FVC, FEV0.1/FVC ratio and PEF) at baseline or during the methacholine provocation assay.ConclusionsFE-derived outcomes in four mouse disease models behaved similarly to changes found in human spirometry. Routine combined lung function assessments could increase the translational utility of mouse models.Electronic supplementary materialThe online version of this article (doi:10.1186/s12931-017-0610-1) contains supplementary material, which is available to authorized users.
In 1981, in Spain, the ingestion of an oil fraudulently sold as olive oil caused an outbreak of a previously unrecorded condition, later known as toxic oil syndrome (TOS), clinically characterized by intense incapacitating myalgias, marked peripheral eosinophilia, and pulmonary infiltrates. Of the 20,000 persons affected, approximately 300 died shortly after the onset of the disease and a larger number developed chronic disease. For more than 15 years, a scientific committee supported by the World Health Organization's Regional Office for Europe and by the Institute of Health Carlos III in Madrid has guided investigation intended to identify the causal agent(s), to assess toxicity and mode of action, to establish the pathogenesis of the disease, and to detect late consequences. This report summarizes advances in research on this front. No late mortality excess has been detected. Among survivors, the prevalence of some chronic conditions (e.g., sclerodermia, neurologic changes) is high. Attempts to reproduce the condition in laboratory animals have been unsuccessful, and no condition similar to TOS has been reported in the scientific literature. Laboratory findings suggest an autoimmune mechanism for TOS, such as high levels of seric soluble interleukin-2 receptor. Epidemiologic studies integrated with chemical analyses of case-related oils have shown that the disease is strongly associated with the consumption of oils containing fatty acid esters of 3-(N-phenylamino)-1,2-propanediol (PAP). These chemicals have also been found in oils synthesized under conditions simulating those hypothesized to have occurred when the toxic oil was produced in 1981. Whether PAP esters are simply markers of toxicity of oils or have the capability to induce the disease remains to be elucidated.
Occupational asthma can be defined as asthma that is caused specifically by exposure to an agent present at work. The important notion in this definition is the phrase "caused specifically". This implies that when asthma is not really caused but only aggravated by work, this should not be considered as occupational asthma. Such aggravation of preexisting asthma may occur through exposure to non-specific factors, such as irritants, cold or physical exercise. However, it must be recognised that this theoretical difference between occupational asthma and work-aggravated asthma is not always easy to make in practice, particularly when there is exposure to airway irritants. Certainly, pre-existing asthma does not automatically exclude the possibility of occupational asthma, and work-aggravated asthma also needs appropriate individual and collective measures in the workplace. However, for the purposes of this article, only occupational asthma and not work-aggravated asthma will be considered.There are different categories of occupational asthma depending on pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.