This paper is devoted to boundary-value problems for Riemann–Liouville-type fractional differential equations of variable order involving finite delays. The existence of solutions is first studied using a Darbo’s fixed-point theorem and the Kuratowski measure of noncompactness. Secondly, the Ulam–Hyers stability criteria are examined. All of the results in this study are established with the help of generalized intervals and piecewise constant functions. We convert the Riemann–Liouville fractional variable-order problem to equivalent standard Riemann–Liouville problems of fractional-constant orders. Finally, two examples are constructed to illustrate the validity of the observed results.
This study establishes the existence and stability of solutions for a general class of Riemann–Liouville (RL) fractional differential equations (FDEs) with a variable order and finite delay. Our findings are confirmed by the fixed-point theorems (FPTs) from the available literature. We transform the RL FDE of variable order to alternate RL fractional integral structure, then with the use of classical FPTs, the existence results are studied and the Hyers–Ulam stability is established by the help of standard notions. The approach is more broad-based and the same methodology can be used for a number of additional issues.
A class of the boundary value problem is investigated in this research work to prove the existence of solutions for the neutral fractional differential inclusions of Katugampola fractional derivative which involves retarded and advanced arguments. New results are obtained in this paper based on the Kuratowski measure of noncompactness for the suggested inclusion neutral system for the first time. On the one hand, this research concerns the set-valued analogue of Mönch fixed point theorem combined with the measure of noncompactness technique in which the right-hand side is convex valued. On the other hand, the nonconvex case is discussed via Covitz and Nadler fixed point theorem. An illustrative example is provided to apply and validate our obtained results.
In this paper, we study the existence of integrable solutions for initial value problems for fractional
order implicit differential equations with Hadamard fractional derivative. Our results are based on
Schauder’s fixed point theorem and the Banach contraction principle fixed point theorem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.