Multimodal collaborative therapy has been recognized as one of the more effective means to eliminate tumors in the current biomedicine research field as compared with monotherapy. Among them, by taking advantage of its high-precision and controllability, phototherapy has become a mainstay of treatment. However, physical encapsulation of free photosensitive units within nanocarriers was one of the main implementations, which might inevitably result in the photosensitizer leakage and side effect. For this purpose, a kind of multifunctional integrated polyprodrug amphiphiles, P(PFO-IG-CPT)-PEG, were prepared by reversible addition–fragmentation chain transfer polymerization from polymerizable pentadecafluorooctan monomers, indocyanine green monomers, reduction-responsive camptothecin monomers, and acid-responsive PEG based methacrylate monomers (GMA(-OH/-PEG)). The resultant copolymers could self-assemble into spherical nanoparticles in water, performing size-deformability in acidic conditions and subsequent disintegration in reduction environment as demonstrated by in vitro experiments. Furthermore, an enhanced CPT release ratio and rate from nanoparticles could be achieved by a NIR irradiation due to the hyperthermia induced by the covalently linked IG moieties. Not only that, because of the sufficient O2 content brought by PFO, the NIR light-triggered generation of 1O2 was also detected in cells. With the combination of CPT-guided chemotherapy as well as NIR light-guided photo-thermal and photodynamic therapies, fatal and irreversible damage to cancer cells was observed by cell experiments; the implanted tumor size in the mouse model was obviously shrunk upon receiving multimodal collaborative therapy. We speculate that such fabricated nanodiagnosis and treatment systems could meet the growing emergency for effective drug delivery, programmed and on-demand drug release, and multimodal integrated therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.