Background Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. Results Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. Conclusion The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.
Water is crucial to plant growth and development. Under heterogeneous environmental water deficiency, physiological integration of the rhizomatous clonal plant triggers a series of physiological cascades, which induces both signaling and physiological responses. It is known that the rhizome of Phyllostachys edulis, which connects associated clonal ramets, has important significance in this physiological integration. This significance is attributed to the sharing of water and nutrients in the vascular bundle of clonal ramets under heterogeneous water conditions. However, the physiological characteristics of physiological integration under heterogeneous water stress remain unclear. To investigate these physiological characteristics, particularly second messenger Ca 2+ signaling characteristics, long-distance hormone signaling molecules, antioxidant enzyme activity, osmotic adjustment substance, and nitrogen metabolism, ramets with a connected (where integration was allowed to take place) and severed rhizome (with no integration) were compared in this study. The vascular bundle structure of the rhizome was also observed using laser confocal microscopy. Overall, the results suggest that interconnected rhizome of P. edulis can enhance its physiological function in response to drought-induced stress under heterogeneous water deficiency. These measured changes in physiological indices serve to improve the clonal ramets' drought adaptivity through the interconnected rhizome.
Recently, the endangerment of wild rattan population draws attention on the conservation and sustainable utilization of rattan resources. Rattan growing usually faces the light and water stress. Therefore, we aim to explore the combined effects of shade and drought on seedling growth, thus providing a theoretical ground for the conservation and artificial cultivation of the rattan. The combined effects of shade and drought on physiological and biochemical traits were studied in two-years-old Calamus viminalis seedlings. Photosynthetic indices including Pn, Gs, Tr, and Ci and physiological indices including MDA, SOD, POD, CAT, and Pro were measured under four levels of water treatments and four levels of shade. Shade, drought and their interaction have a significant effect on C. viminalis seedlings growth. Generally, moderate shade could alleviate the impact induced by drought. However, mild drought usually enhances the effect caused by shading. The result showed that the shade decreased Pn, Gs, and Tr but increased Ci, MDA content and Pro content. Either with the shading or drought increasing, the activity of SOD, POD, and CAT firstly increase and then declined. Drought reduced Pn, Gs, Tr, and Ci but increased the content of MDA and Pro. Overall, the result suggests that 25-50% shading and 65% RSWC water treatment are most beneficial for the growth of C. viminalis seedlings.
Polyamines are small positively charged molecules in plants and play important functions in many biological processes under various environmental stresses. One of the most confounding problems relating to polyamines (PAs) in stresses is the lack of understanding of the mechanisms underlying their function(s). Furthermore, a limited number of studies have addressed this issue at the sub-cellular level, especially in tree plants under drought stress. Therefore, in this research, by simulating natural drought stress with polyethylene glycol (PEG) osmotic stress, the relationship between the levels of conjugated polyamines and the activity of H+-ATPase in the plasma membrane was elucidated with the roots of two plum (Prunus salicina L.) cultivars, which were different in drought tolerance, as experimental materials. Furthermore, free PA levels and the activities of S-adenosylmethionine decarboxylase (SAMDC) and transglutaminase (TGase), which were closely associated with the levels of free and conjugated PAs, were also detected. Results showed that under osmotic stress, the increases of the levels of non-covalently conjugated (non-CC) spermidine (Spd) and spermine (Spm), covalently conjugated (CC) putrescine (Put) and Spd in the plasma membrane of drought-tolerant Ganli No. 5 were more significant than those of drought-sensitive Suli No. 3, indicating that these conjugated PAs might be involved in the tolerance of plum seedlings to stress. Furthermore, the conjugated PAs were closely correlated with plum seedling growth, water retention capacity, plasma membrane damage degree, and hydrogen (H+)-ATPase activity in the plasma membrane. To get more complementary pieces of evidence, we subjected plum seedlings to combined treatments of PEG and exogenous PA (Spd and Spm), and an inhibitor of SAMDC [methylglyoxal-bis (guanylhydrazone), (MGBG)] or TGase (o-phenanthroline). These results collectively suggested that non-CC Spd and Spm, CC Put and Spd in plasma membrane might function in enhancing the tolerance of plum seedlings to osmotic stress by stabilizing membrane structure and therefore elevating H+-ATPase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.