Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is significantly different from the other strains published.
Elevations in cytosolic free calcium concentration constitute a fundamental signal transduction mechanism in plants; however, the particular characteristics of calcium ion (Ca2+) signal occurrence in plants is still under debate. Little is known about how stimulus-specific Ca2+ signal fluctuations are generated. Therefore, we investigated the identity of the Ca2+ signal generation pathways, influencing factors, and the effects of the signaling network under drought stress on Phyllostachys edulis (Carrière) J. Houz. Non-invasive micro testing and laser confocal microscopy technology were used as platforms to detect and record Ca2+ signaling in live root tip and leaf cells of P. edulis under drought stress. We found that Ca2+ signal intensity (absorption capacity) positively correlated with degree of drought stress in the P. edulis shoots, and that Ca2+ signals in different parts of the root tip of P. edulis were different when emitted in response to drought stress. This difference was reflected in the Ca2+ flux and in regional distribution of Ca2+. Extracellular Ca2+ transport requires the involvement of the plasma membrane Ca2+ channels, while abscisic acid (ABA) can activate the plasma membrane Ca2+ channels. Additionally, Ca2+ acted as the upstream signal of H2O2 in the signaling network of P. edulis under drought stress. Ca2+ was also involved in the signal transduction process of ABA, and ABA can promote the production of Ca2+ signals in P. edulis leaves. Our findings revealed the physiological role of Ca2+ in drought resistance of P. edulis. This study establishes a theoretical foundation for research on the response to Ca2+ signaling in P. edulis.
Based on long-term monitoring conducted in Chang-ning county, a pilot site of the 'Grain for Green Program' (GFGP), an integrated emergy and economic method was applied to evaluate the dynamic ecological-economic performance of 3 kinds of bamboo systems planted on sloping farmland. The results confirmed the positive effects of all 3 kinds of bamboo systems on water conservation and soil erosion control. The benefits gained progressively increased during the first 8 years after conversion, going from 4639 to 16127 EMyuan/ha/yr on average. All three bamboo plantations were much more sustainable than common agricultural crops planted on sloping land (CP) on both the short and long-term scales with their Emergy Sustainability Index (ESI) and Emergy Index for Sustainable Development (EISD), respectively, being 14.07-325.71 and 80.35-265.80 times that of CP. However, all 3 bamboo plantations had a Net Economic Benefit (NEB) less than that of CP during the first 8 years after conversion. Even with the government-mandated ecological compensation applied, the annual NEBs of the (BR) and (PP) plantations were, respectively, 3922.03 and 7422.77 yuan/ha/yr lower than the NEB of CP. Emergy-based evaluation of ecosystem services provides an objective reference for applying ecological compensation in strategy-making, but it cannot wholly solve the economic viability problem faced by all bamboo plantations. Inter-planting annual herbs or edible fungus, such as , within bamboo forests, especially in young bamboo plantations, might be a direction for optimizing bamboo cultivation that would improve its economic viability.
© iForest -Biogeosciences and Forestry IntroductionForest ecosystems can be carbon sinks or sources depending on the balance between carbon input through photosynthesis and release from respiration (Saiz et al. 2006). In forest ecosystems, soil respiration (RS) can account for 30% to 80% of the whole ecosystem respiration (Davidson et al. 2000, Law et al. 2002, Davidson & Janssens 2006. Globally, RS is the second largest carbon exchange between the soil and atmosphere, and returns as much as 80 to 98 Pg C yr -1 back into the atmosphere (BondLamberty & Thomson 2010, Raich et al. 2002, which is more than 10 times the carbon release from fossil fuel combustion (IPCC 2007). Therefore, RS is one of the major contributors to the carbon balance, and small changes in RS rate could give rise to significant changes in atmospheric CO2 concentration, leading to feedbacks to climate change (Ryan & Law 2005). Although the significance of RS for carbon balance on a regional and even the global scale has been demonstrated, there is still much to understand about biotic or abiotic controllers of RS and its source components (Gomez-Casanovas et al. 2012). For example, partitioning RS is still challenging because of remarkable soil disturbances (Hanson et al. 2000, Tang et al. 2005. Spatial and temporal variability in RS are often reported due to high variations in forest types, stand ages and management practices (King et al. 2004, Tang & Baldocchi 2005, Saiz et al. 2006, Pang et al. 2013). This has limited our ability to accurately predict the responses of RS and carbon balance to current and future climate change (Ryan & Law 2005). Therefore, measuring RS in different forest types has been proven to be increasingly important to accurately predict global carbon cycles and its responses to climate change .RS is overwhelmingly comprised of rhizoshperic respiration (respiration from roots, mycorrhizae and microbial respiration in the rhizosphere) and heterotrophic respiration , indicating that the Moso bamboo forest studied is a significant carbon sink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.