Background
The role of TMED3 involved in cancers has been seldom described, let alone in breast cancer. To explore the clinicopathological significance of TMED3 expression and the biological roles involved in breast cancer cells, we undertook the study.
Methods
Immunohistochemistry was performed to observe the pattern of TMED3 expression in breast cancer tissues, totaling 224 cases; followed by detailed statistical analysis between TMED3 expression versus clinicopathological information available. To explore the role of TMED3 involved in the malignant behaviors of breast cancer cells, wound-healing and Transwell assays were conducted to evaluate the variation of migration and invasion of MCF-7 and MDA-MB-231 cells whose TMED3 has been stably silenced using lenti-viral based short hairpin RNA (shRNA) vectors. MTT, clonogenic assay and xenograft nude mice model were undertaken to observe the variation of proliferation both in vitro and in vivo.
Results
It was shown that elevated TMED3 markedly correlated with ER, PR, Her-2 status, and lymph nodes metastases in addition to significant association with poor overall prognosis. In vitro, TMED3 was shown to promote proliferation, migration and invasion of breast cancer cells. Moreover, miR-188-3p was identified as a novel negative regulator of TMED3 in breast cancer, which can slow down the proliferation, migration and invasion of MCF-7 cells. Results from in vivo xenograft nude mice models showed that lenti-viral based miR-188-3p re-expression can markedly impair the tumor growth.
Conclusions
Our data define and bolster the oncogenic role of TMED3 in breast cancer.
Electronic supplementary material
The online version of this article (10.1186/s12935-019-0791-4) contains supplementary material, which is available to authorized users.
In this letter, we present the results of InAs quantum dots (QDs) prepared on a (001) InP substrate. As/P exchange reaction at the surface of InP buffer was used to form the InAs islands in the reactor of low pressure metalorganic chemical vapor deposition at 600 °C. Preliminary characterizations of the InAs QDs have been investigated by using atomic force microscopy and photoluminescence (PL). Room temperature PL emission from the 0-dimensional system centers at 1520 nm and the full width at half maximum of the PL is 92 meV.
NEK5, a contraction of NIMA Related Kinase 5, has been shown to regulate the centrosome integrity of cells though; it has been little described in cancer. Herein, to explore the clinicopathological meaning of NEK5 expression in breast cancer, immunohistochemistry was performed to detect the expression of NEK5 on tissue blocks, totaling 203 cases. Quantitative real‐time PCR (qRT‐PCR) was used to evaluate NEK5 mRNA expression with 30 cases of fresh tissues. To observe the function of NEK5 in the growth of breast cancer cells, both MTT and xenografted nude mice were performed. And Transwell assay was employed to observe the variation of migration and invasion. It was shown that up‐regulated NEK5 was significantly associated with tumor progression and poor overall prognosis; and that silencing of NEK5 can significantly suppress the proliferation both in vivo and in vitro, inhibiting migration, and invasion. To get insight into the underlying mechanism by which NEK5 operates in proliferation of breast cancer cells, we showed that NEK5 can up‐regulate Cyclin A2 and down‐regulate Cyclin D1, Cyclin D3, and Cyclin E1 expression. Additionally, Cyclin A2 was also identified as a novel interacting protein for NEK5. Taking together, we firstly defined the oncogenic role of NEK5 in breast cancer that was related to proliferation, supporting that NEK5 might be used a new therapeutic target in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.