Prolonged exposure to NO2 can cause lung tissue inflammation, bronchiolitis fibrosa obliterans, and silo filler’s disease. In recent years, nanostructured semiconducting metal oxides have been widely used to fabricate gas sensors because of their unique structure and surface-to-volume ratio compared to layered materials. In particular, the different morphologies of ZnO-based nanostructures significantly affect the detection property of NO2 gas sensors. However, because of the large interaction energy of chemisorption (1–10 eV), metal oxide-based gas sensors are typically operated above 100 °C, overcoming the energy limits to attain high sensitivity and fast reaction. High operating temperature negatively affects the reliability and durability of semiconductor-based sensors; at high temperature, the diffusion and sintering effects at the metal oxide grain boundaries are major factors causing undesirable long-term drift problems and preventing stability improvements. Therefore, we demonstrate NO2 gas sensors consisting of ZnO hemitubes (HTs) and nanotubes (NTs) covered with TiO2 nanoparticles (NPs). To operate the gas sensor at room temperature (RT), we measured the gas-sensing properties with ultraviolet illumination onto the active region of the gas sensor for photoactivation instead of conventional thermal activation by heating. The performance of these gas sensors was enhanced by the change of barrier potential at the ZnO/TiO2 interfaces, and their depletion layer was expanded by the NPs formation. The gas sensor based on ZnO HTs showed 1.2 times higher detection property than those consisting of ZnO NTs at the 25 ppm NO2 gas.
We demonstrate the surface plasmon (SP)-enhanced ultraviolet (UV) emitter using Pt nanoparticles (NPs). The UV emitter is hole-patterned on the p-AlGaN layer to consider the penetration depth of Pt NPs. The Pt NPs with sizes under 50 nm are required to realize the plasmonic absorption in UV wavelength. In this study, we confirm the average Pt NP sizes of 10 nm, 20 nm, and 25 nm, respectively, at an annealing temperature of 600 °C. The absorption of annealed Pt NPs is covered with the 365-nm wavelength. The electroluminescence intensity of SP-UV is 70% higher than that of reference UV emitter without hole-patterns and Pt NPs. This improvement can be attributed to the increase of spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and Pt NPs deposited on the p-AlGaN layer.
We investigated the use of a silver reflector embedded with Ni–Cu nanoparticles to achieve low resistance and high reflectivity in GaN-based flip-chip light-emitting diodes. Compared to a single layer of Ag, the NC-NPs/Ag reflector exhibits a higher light reflectance of ~90% at
a wavelength of 450 nm, a lower contact resistance of 4.75 × 10−5 II cm2, and improved thermal stability after annealing at 400°C. The NC-NPs formed after the annealing process prevents agglomeration of the Ag layer, while also reducing the Schottky barrier
height between the p-GaN layer and metal reflector. The LED fabricated with a NC-NPs/Ag reflector exhibited a forward-bias voltage of 3.13 V and an improvement in light output power of 36.6% (at 20 mA), when compared with the LED composed of a Ag SL. This result indicates that the NC-NPs/Ag
reflector is a promising p-type reflector for high-intensity light-emitting diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.