In this paper, we describe and validate the EquiMoves system, which aims to support equine veterinarians in assessing lameness and gait performance in horses. The system works by capturing horse motion from up to eight synchronized wireless inertial measurement units. It can be used in various equine gait modes, and analyzes both upper-body and limb movements. The validation against an optical motion capture system is based on a Bland–Altman analysis that illustrates the agreement between the two systems. The sagittal kinematic results (protraction, retraction, and sagittal range of motion) show limits of agreement of ±2.3 degrees and an absolute bias of 0.3 degrees in the worst case. The coronal kinematic results (adduction, abduction, and coronal range of motion) show limits of agreement of −8.8 and 8.1 degrees, and an absolute bias of 0.4 degrees in the worst case. The worse coronal kinematic results are most likely caused by the optical system setup (depth perception difficulty and suboptimal marker placement). The upper-body symmetry results show no significant bias in the agreement between the two systems; in most cases, the agreement is within ±5 mm. On a trial-level basis, the limits of agreement for withers and sacrum are within ±2 mm, meaning that the system can properly quantify motion asymmetry. Overall, the bias for all symmetry-related results is less than 1 mm, which is important for reproducibility and further comparison to other systems.
Abstract. Monitoring the road pavement is a challenging task. Authorities spend time and finances to monitor the state and quality of the road pavement. This paper investigate road surface monitoring with smartphones equipped with GPS and inertial sensors: accelerometer and gyroscope. In this study we describe the conducted experiments with data from the time domain, frequency domain and wavelet transformation, and a method to reduce the effects of speed, slopes and drifts from sensor signals. A new audiovisual data labelling technique is proposed. Our system named RoADS, implements wavelet decomposition analysis for signal processing of inertial sensor signals and Support Vector Machine (SVM) for anomaly detection and classification. Using these methods we are able to build a real time multi class road anomaly detector. We obtained a consistent accuracy of ≈90% on detecting severe anomalies regardless of vehicle type and road location. Local road authorities and communities can benefit from this system to evaluate the state of their road network pavement in real time.
SummaryBackgroundInertial measurement unit (IMU) sensor‐based techniques are becoming more popular in horses as a tool for objective locomotor assessment.ObjectivesTo describe, evaluate and validate a method of stride detection and quantification at walk and trot using distal limb mounted IMU sensors.Study designProspective validation study comparing IMU sensors and motion capture with force plate data.MethodsA total of seven Warmblood horses equipped with metacarpal/metatarsal IMU sensors and reflective markers for motion capture were hand walked and trotted over a force plate. Using four custom built algorithms hoof‐on/hoof‐off timing over the force plate were calculated for each trial from the IMU data. Accuracy of the computed parameters was calculated as the mean difference in milliseconds between the IMU or motion capture generated data and the data from the force plate, precision as the s.d. of these differences and percentage of error with accuracy of the calculated parameter as a percentage of the force plate stance duration.ResultsAccuracy, precision and percentage of error of the best performing IMU algorithm for stance duration at walk were 28.5, 31.6 ms and 3.7% for the forelimbs and −5.5, 20.1 ms and −0.8% for the hindlimbs, respectively. At trot the best performing algorithm achieved accuracy, precision and percentage of error of −27.6/8.8 ms/−8.4% for the forelimbs and 6.3/33.5 ms/9.1% for the hindlimbs.Main limitationsThe described algorithms have not been assessed on different surfaces.ConclusionsInertial measurement unit technology can be used to determine temporal kinematic stride variables at walk and trot justifying its use in gait and performance analysis. However, precision of the method may not be sufficient to detect all possible lameness‐related changes. These data seem promising enough to warrant further research to evaluate whether this approach will be useful for appraising the majority of clinically relevant gait changes encountered in practice.
For centuries humans have been fascinated by the natural beauty of horses in motion and their different gaits. Gait classification (GC) is commonly performed through visual assessment and reliable, automated methods for real-time objective GC in horses are warranted. In this study, we used a full body network of wireless, high sampling-rate sensors combined with machine learning to fully automatically classify gait. Using data from 120 horses of four different domestic breeds, equipped with seven motion sensors, we included 7576 strides from eight different gaits. GC was trained using several machine-learning approaches, both from feature-extracted data and from raw sensor data. Our best GC model achieved 97% accuracy. Our technique facilitated accurate, GC that enables in-depth biomechanical studies and allows for highly accurate phenotyping of gait for genetic research and breeding. Our approach lends itself for potential use in other quadrupedal species without the need for developing gait/animal specific algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.