O objetivo do trabalho é analisar dados sobre a real disponibilidade dos recursos hídricos e o reflexo de sua degradação na saúde humana. Visa a acompanhar o crescimento da degradação ambiental nos últimos anos e o fornecimento de dados recentes e confiáveis sobre o tema. Foram abordados os seguintes aspectos: (a) atividades antrópicas e degradação ambiental; (b) estatísticas da disponibilidade e demanda dos recursos hídricos; (c) despejos urbanos e industriais como fontes de contaminação dos recursos hídricos; (d) efeitos deletérios da água contaminada sobre o organismo humano. São alarmantes os valores estatísticos relacionados aos efeitos da água contaminada sobre a saúde humana e ao aumento na demanda dos recursos hídricos. É de importância fundamental a tomada de uma consciência ambientalista por parte das gerações atuais a fim de se evitar o estresse máximo do sistema hídrico, cuja efetivação está prevista para um futuro muito próximo.
The comet assay was used to study the sensitivity of the widely distributed freshwater bivalve mollusk Corbicula fluminea to the DNA-damaging alkylating-agent methylmethane sulfonate (MMS). This study was undertaken to ascertain if C. fluminea is a good bioindicator of pollutants in aquatic environments and identify which C. fluminea tissue is most effective and practical for genotoxicity studies. The mollusks were exposed to 0.6, 1.2 or 2.4 X 10 -4 M MMS for 40 min and their hemolymph, gill tissue and digestive gland tissue assessed for the level of DNA damage and the time needed for the tissues to recovery. Regression analysis showed a direct linear dose-response relationship between MMS concentration and the number of damaged cells for hemolymph and digestive gland tissue but a quadratic relationship for gill tissue, which made the interpretation the gill tissue results difficult. The basal level of DNA damage to gill tissue was very high, possibly because gill is the organs most directly exposed to environmental toxins and mutagenic agents. Although all three types of tissue produced useful results, hemolymph and digestive gland tissue produced more reproducible and reliable results. Hemolymph was the best sample type in that it was easy to obtain and handle, while gill tissue required more manipulation to obtain cell suspensions. Our results indicate that C. fluminea is an optimal bioindicator for the determination genotoxic contaminants in aquatic environments.
Drought cause serious yield losses in soybean (Glycine max), roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista) and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD) and real time polymerase chain reaction (PCR) techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1). The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.