A class of inverse problems for restoring the right-hand side of a parabolic equation for a large class of positive operators with discrete spectrum is considered. The results on existence and uniqueness of solutions of these problems as well as on the fractional time diffusion (subdiffusion) equations are presented. Consequently, the obtained results are applied for the similar inverse problems for a large class of subelliptic diffusion and subdiffusion equations (with continuous spectrum). Such problems are modelled by using general homogeneous leftinvariant hypoelliptic operators on general graded Lie groups. A list of examples is discussed, including Sturm-Liouville problems, differential models with involution, fractional Sturm-Liouville operators, harmonic and anharmonic oscillators, Landau Hamiltonians, fractional Laplacians, and harmonic and anharmonic operators on the Heisenberg group. The rod cooling problem for the diffusion with involution is modelled numerically, showing how to find a "cooling function", and how the involution normally slows down the cooling speed of the rod.
A class of inverse problems for restoring the right-hand side of a fractional heat equation with involution is considered. The results on existence and uniqueness of solutions of these problems are presented.
KEYWORDSfractional differential equation, inverse problem, involution, nonlocal heat equation
The aim of this paper is to establish Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for new fractional integral operators with exponential kernel. These results allow us to obtain a new class of functional inequalities which generalizes known inequalities involving convex functions. Furthermore, the obtained results may act as a useful source of inspiration for future research in convex analysis and related optimization fields.2000 Mathematics Subject Classification. 26A33; 26D10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.