A class of inverse problems for restoring the right-hand side of a fractional heat equation with involution is considered. The results on existence and uniqueness of solutions of these problems are presented.
KEYWORDSfractional differential equation, inverse problem, involution, nonlocal heat equation
A time-fractional space-nonlocal reaction-diffusion equation in a bounded domain is considered. First, the existence of a unique local mild solution is proved. Applying Poincaré inequality it is obtained the existence and boundedness of global classical solution for small initial data. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.