BackgroundAtrial Fibrillation is the most common arrhythmia encountered following cardiac surgery. The most commonly administered drug used in treatment and prophylaxis is amiodarone which has several toxic effects on major organ functions. There are few clinical data concerning prevention of toxic effects and there is no routinely suggested agent. The aim of this study is to document the cytotoxic effects of amiodarone on cell culture media and compare the cytoprotective effects of commonly used antioxidant agents.MethodsL929 mouse fibroblast cell line was cultured and 100,000 cells/well-plate were obtained. First group of cells were treated with increasing concentrations of amiodarone (20 to 180 μM) alone. Second and third group of cells were incubated with one-fold equimolar dose of vitamin C and N-acetyl cysteine prior to amiodarone exposure. The viability of cells were measured by MTT assay and the cytoprotective effect of each agent was compared.ResultsThe cytotoxicity of amiodarone was significant with concentrations of 100 μM and more. The viabilities of both vitamin C and N-acetyl cysteine treated cells were higher compared to untreated cells.ConclusionsVitamin C and N-acetyl cysteine are commonly used in the clinical setting for different purposes in context of their known antioxidant actions. Their role in prevention of amiodarone induced cytotoxicity is not fully documented. The study fully demonstrates the cytoprotective role of both agents in amiodarone induced cytotoxicity on cell culture media; more pronounced with vitamin C in some concentrations. The findings may be projectile for further clinical studies.
As a conclusion, there was no association between 5-HTT, DAT1 and DRD4 genes VNTR polymorphisms and obesity.
Introduction Amiodarone, a pharmaceutical extensively used to suppress atrial and ventricular tachyarrhythmias, is also known to cause many side effects on many tissues. N-acetyl-cysteine (NAC), vitamin E and vitamin C are known as antioxidants for their ability to minimize oxidative stress. In the peer-reviewed literature, there is no study reporting on the protective effects of these antioxidant agents against its hepatotoxicity. Aim We investigated the oxidative effects of NAC, vitamins E and C on liver tissue after amiodarone treatment. Material and methods Rats were randomly assigned to: control; amiodarone group; amiodarone + NAC treated group; amiodarone + Vit. E group and amiodarone + Vit. C group. Liver tissues were isolated from animals and total glutathione levels were measured. Results In all time intervals, the level of glutathione increased. When all time intervals were compared, the amiodarone group revealed the lowest levels. The antioxidant co-administered group was studied; the glutathione levels were statistically significantly higher than the sole amiodarone group. When vitamins E, C or N-acetyl cysteine were examined, there was no statistically significant difference among them. Conclusions In this study we found that hepatotoxicity capacity of amiodarone may be reduced by taking up antioxidants. In addition, the effect documented here may be reproducible and may be applied to clinical settings.
The aim of this study was to identify mutations in three different genes, the arginine-vasopressin-neurophysin II (AVP-NPII) gene, the arginine-vasopressin receptor 2 (AVPR2) gene, and the vasopressin-sensitive water channel aquaporin-2 (AQP2) gene in Turkish patients affected by central diabetes insipidus or nephrogenic diabetes insipidus. This study included 15 patients from unrelated families. Prospective clinical data were collected for all patients including the patients underwent a water deprivation-desmopressin test. The coding regions of the AVPR2, AQP2, and AVP-NPII genes were amplified by polymerase chain reaction and submitted to direct sequence analysis. Of the 15 patients with diabetes insipidus referred to Gulhane Military Medical Academy, Department of Endocrinology and Metabolism, eight patients have AVPR2 mutations, five patients have AQP2 mutations and two patients have AVP-NPII mutations. Of the patients, which have AVPR2 mutations, one is compound heterozygous for AVPR2 gene. Seven of these mutations are novel. Comparison of the clinical outcomes of these mutations may facilitate in understanding the functions of AVP-NPII, AQP2, and AVPR2 genes in future studies.
Diabetes insipidus is a rare disorder characterized by an impairment in water balance because of the inability to concentrate urine. While central diabetes insipidus is caused by mutations in the AVP, the reason for genetically determined nephrogenic diabetes insipidus can be mutations in AQP2 or AVPR2. After release of AVP from posterior pituitary into blood stream, it binds to AVPR2, which is one of the receptors for AVP and is mainly expressed in principal cells of collecting ducts of kidney. Receptor activation increases cAMP levels in principal cells, resulting in the incorporation of AQP2 into the membrane, finally increasing water reabsorption. This pathway can be altered by mutations in AVPR2 causing nephrogenic diabetes insipidus. In this study, we functionally characterize four mutations (R68W, ΔR67-G69/G107W, V162A and T273M) in AVPR2, which were found in Turkish patients. Upon AVP stimulation, R68W, ΔR67-G69/G107W and T273M showed a significantly reduced maximum in cAMP response compared to wild-type receptor. All mutant receptor proteins were expressed at the protein level; however, R68W, ΔR67-G69/G107W and T273M were partially retained in the cellular interior. Immunofluorescence studies showed that these mutant receptors were trapped in ER and Golgi apparatus. The function of V162A was indistinguishable from the indicating other defects causing disease. The results are important for understanding the influence of mutations on receptor function and cellular trafficking. Therefore, characterization of these mutations provides useful information for further studies addressing treatment of intracellularly trapped receptors with cell-permeable antagonists to restore receptor function in patients with nephrogenic diabetes insipidus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.