<b><i>Background:</i></b> Handgrip strength measurements are feasible with older adults and a reliable indicator for vitality, physical function, and several risk factors in the ageing process. Interventions with exercise training induce a variety of strength, balance, and endurance improvements. The pooled transfer effects of exercise training on handgrip strength has not been investigated to date. Thus, the objective of this meta-analytical review is to examine the effects of different exercise training on handgrip strength in healthy community-dwelling older adults of 60 years or older. <b><i>Methods:</i></b> The literature search was conducted in three databases (PubMed, Web of Science, SPORTDiscus) using the following search terms with Boolean conjunctions: (hand grip* OR grip strength OR grip power) AND (sport* OR train* OR exercis* OR strength OR intervention OR endurance OR resistance OR balance OR aerob*) AND (old* OR elder* OR senior*). Non-randomized and randomized controlled trials with an exercise training and handgrip strength as the outcome parameter were screened. Study quality was independently assessed by two researchers using the PEDro scale. Comparison of handgrip strength between the intervention and control groups was conducted by using the hedges g (including adjustment for small sample sizes), calculating standardized mean differences (SMDs). A random effects inverse-variance model was applied for statistical analysis. <b><i>Results:</i></b> Twenty-four trials (mean PEDro score 5.8 ± 0.9) with a total of 3,018 participants (mean age 73.3 ± 6.0 years) were included. Small but significant effects (<i>p</i> < 0.001) on handgrip strength were observed (SMD 0.28, 95% CI 0.13–0.44). Study heterogeneity (<i>I</i><sup>2</sup> 56%) and the funnel shape for publication bias analyses were acceptable. <b><i>Conclusions:</i></b> Meaningful but small transfer effects of a multitude of different training approaches on handgrip strength occurred in healthy community-dwelling older adults. Handgrip strength cannot clearly be recommended to assess general functional performance for all kinds of exercise programs, whereas task-specific training and multimodal training modes seem to provide an appropriate stimulus to also improve handgrip strength.
Physical training is considered as a low-cost intervention to generate cardioprotective benefits and to promote physical and mental health, while reducing the severity of acute respiratory infection symptoms in older adults. However, lockdown measures during COVID-19 have limited people’s opportunity to exercise regularly. The aim of this study was to investigate the effect of eight weeks of Fitness and Dance training, followed by four weeks of COVID-19-induced detraining, on cardiac adaptations and physical performance indicators in older adults with mild cognitive impairment (MCI). Twelve older adults (6 males and 6 females) with MCI (age, 73 ± 4.4 y; body mass, 75.3 ± 6.4 kg; height, 172 ± 8 cm; MMSE score: 24–27) participated in eight weeks of a combined Fitness-Dance training intervention (two sessions/week) followed by four weeks of training cessation induced by COVID-19 lockdowns. Wireless Polar Team Pro and Polar heart rate sensors (H10) were used to monitor covered distance, speed, heart rate (HR min, avg and max), time in HR zone 1 to 5, strenuousness (load score), beat-to-beat interval (max RR and avg RR) and heart rate variability (HRV-RMSSD). One-way ANOVA was used to analyze the data of the three test sessions (T1: first training session, T2: last training session of the eight-week training program, and T3: first training session after the four-week training cessation). Statistical analysis showed that eight weeks of combined Fitness-Dance training induced beneficial cardiac adaptations by decreasing HR (HR min, HR avg and HR max) with p < 0.001, ES = 0.5–0.6 and Δ = −7 to−9 bpm, and increasing HRV related responses (max and avg RR and RMSSD), with p < 0.01 and ES = 0.4. Consequently, participants spent more time in comfortable HR zones (e.g., p < 0.0005; ES = 0.7; Δ = 25% for HR zone 1) and showed reduced strenuousness (p = 0.02, Δ = −15% for load score), despite the higher covered total distance and average speed (p < 0.01; ES = 0.4). However, these changes were reversed after only four weeks of COVID-19 induced detraining, with values of all parameters returning to their baseline levels. In conclusion, eight weeks of combined Fitness-Dance training seems to be an efficient strategy to promote cardioprotective benefits in older adults with MCI. Importantly, to maintain these health benefits, training has to be continued and detraining periods should be reduced. During a pandemic, home-based exercise programs may provide an effective and efficient alternative of physical training.
Older adults with amnestic mild cognitive impairment (aMCI) who in addition to their memory deficits also suffer from frontal-executive dysfunctions have a higher risk of developing dementia later in their lives than older adults with aMCI without executive deficits and older adults with non-amnestic MCI (naMCI). Handgrip strength (HGS) is also correlated with the risk of cognitive decline in the elderly. Hence, the current study aimed to investigate the associations between HGS and executive functioning in individuals with aMCI, naMCI and healthy controls. Older, right-handed adults with amnestic MCI (aMCI), non-amnestic MCI (naMCI), and healthy controls (HC) conducted a handgrip strength measurement via a handheld dynamometer. Executive functions were assessed with the Trail Making Test (TMT A&B). Normalized handgrip strength (nHGS, normalized to Body Mass Index (BMI)) was calculated and its associations with executive functions (operationalized through z-scores of TMT B/A ratio) were investigated through partial correlation analyses (i.e., accounting for age, sex, and severity of depressive symptoms). A positive and low-to-moderate correlation between right nHGS (rp (22) = 0.364; p = 0.063) and left nHGS (rp (22) = 0.420; p = 0.037) and executive functioning in older adults with aMCI but not in naMCI or HC was observed. Our results suggest that higher levels of nHGS are linked to better executive functioning in aMCI but not naMCI and HC. This relationship is perhaps driven by alterations in the integrity of the hippocampal-prefrontal network occurring in older adults with aMCI. Further research is needed to provide empirical evidence for this assumption.
Recreational and professional climbing is gaining popularity. Thus, valid and reliable infield strength monitoring and testing devices are required. This study aims at assessing the validity as well as within- and between-day reliability of two climbing-specific hanging positions for assessing the maximum force with a new force measurement device. Therefore, 25 experienced male (n = 16) and female (n = 9) climbers (age: 25.5 ± 4.2 years, height: 176.0 ± 9.9 cm, weight: 69.7 ± 14.5 kg, body composition: 11.8 ± 5.7% body fat, climbing level: 17.5 ± 3.9 International Rock Climbing Research Association scale) were randomly tested with climbing-specific hang board strength tests (one-handed rung pulling and one-handed bent arm lock-off at 90°). The Tindeq, a load cell-based sensor for assessing different force-related variables, was employed together with a force plate (Kistler Quattro Jump) during both conditions. Data analysis revealed excellent validity for assessment with Tindeq: The intra-class correlation coefficient (ICC) was 0.99 (both positions), while the standard error of the measurement (SEM), coefficient of variation (CV), and limits of agreement (LoA) showed low values. Within day reliability for the assessment with Tindeq was excellent: rung pulling showed an ICC of 0.90 and arm lock-off an ICC of 0.98; between-day reliability was excellent as well: rung pulling indicated an ICC of 0.95 and arm lock-off an ICC of 0.98. Other reliability indicators such as SEM, CV, and LoA were low. The Tindeq progressor can be applied for the cross-sectional and longitudinal climbing strength assessment as this device can detect training-induced changes reliably.
The present study investigated the time course of repetitive maximal isometric grip strength, depending on the arm position, laterality (dominant vs. non-dominant side), and climbing level. The intervention aimed to provide a feasible indicator of maximal strength-endurance in climbing. Seventeen recreational (climbing level (CL): 6.8 (SD 0.5) on the Union Internationale des Associations d’Alpinisme (UIAA) metric scale) and eleven ambitious (CL: 8.7 (SD 0.6) UIAA metric scale) climbers (age: 27 (8) years; BMI: 21.6 (1.9) kg/m2; ape index (arm span divided by body height): 1.05 (0.18); training volume: 2.2 (1.0) h/week). Participants completed maximal isometric handgrip strength (Fmax) tests in four positions (left and right hand beside the trunk as well as left and right hand above the shoulder) plus twelve repetitive work-relief cycles, lasting 4 and 1 s where isometric strength, heart rate, and perceived exertion were recorded. Fmax differed between groups in nearly all positions. A large side × position × time × group interaction was observed for repetitive isometric grip strength (p = 0.009, ηp2 = 0.71). However, subsequent post-hoc tests did not reveal a significant difference between groups during each testing position. Additional correlation analysis between asymmetry and CL showed an inverse relationship for ambitious climbers (r = −0.71). In conclusion, the degree of grip strength decline did not relevantly differentiate between ambitious and recreational climbers. Thus, the time course of handgrip strength seems to mainly rely on maximal grip strength during the first contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.