Interpretation of the behaviors of students in elearning platforms with machine learning models has become an emerging need in recent years. Increase in the number of registered students on e-learning platforms is one of the reasons for choosing machine learning models. Tracking, modeling and understanding student activities gets more complex when the number of students is increased. This study is focusing modeling student activities on e-learning platforms with Complex Event Processing (CEP), Association Rule Mining (ARM) and Clustering methods based on distributed software architecture. Within the scope of this study, different modules that work real-time have been developed. An admin panel has been also developed in order to control all modules and track the student actions. Performance results of modules also obtained and evaluated on distributed system architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.