Antibiotics are nonbiodegradable, can survive at aquatic environments for long periods and they have a big potential bio-accumulation in the environment. They are extensively metabolized by humans, animals and plants. After metabolization, antibiotics or their metabolites are excreted into the aquatic environment. Removal of these compounds from the aquatic environment is feasible by different processes. But antibiotics are not treated in conventional wastewater treatment plants efficiently. During the last years studies with advanced oxidation processes (AOPs) for removal of these pharmaceuticals from waters has shown that they can be useful for removing them fully. Advanced oxidation processes (AOPs) can work as alternatives or complementary method in traditional wastewater treatment, and highly reactive free radicals, especially hydroxyl radicals (OH) generated via chemical (O 3 /H 2 O 2 ,O 3 /OH -), photochemical (UV/O 3 ,O 3 /H 2 O 2 ) reactions, serve as the main oxidant. This study presents an overview of the literature on antibiotics and their removal from water by advanced oxidation processes. It includes almost all types of antibiotics which are consumed by human and veterinary processes. It was found that most of the investigated advanced oxidation treatment processes for the oxidation of antibiotics in water are direct and indirect photolysis with the combinations of H 2 O 2 ,TiO 2 , ozone and Fenton's reagent.
In the recent past years, micropollutants that are pharmaceutically active compounds (PhACs) have been used extensively and have been discovered in raw sewage, wastewater treatment plants, effluents, surface, and groundwater with concentrations from ng/L to several μg/L. Even though many of these compounds are still not determined online, monitoring technology improvements progressed. Today's wastewater treatment plants are not constructed to remove these micropollutants yet. Conventional activated sludge processes are used in the treatment of municipal wastewater but are not specifically designed for the removal of micropollutants. The remaining pharmaceuticals mix into surface waters. At that stage, they can adversely affect the aquatic environment and may cause issues for drinking water production. As the conventional methods are insufficient for removing the micropollutants, other alternative treatment methods can be applied such as coagulation-flocculation, activated carbon adsorption (powdered activated carbon and granular activated carbon), advanced oxidation processes, membrane processes, and membrane bioreactor. It has been observed that membrane bioreactor (MBR) can achieve higher and more consistent micropollutants removal. The removal of micropollutants is based on physicochemical properties of micropollutants and the conditions of treatment. Due to recent technical innovations and cost reductions of the actual membranes, the membrane bioreactor takes attention. In this study, membrane bioreactor experiments for micropollutants in drinking use, wastewater, and surface waters were investigated in detail based on literature investigations, and the feasibility of this method was evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.